RSS

Tag Archives: acorn

Acorn and Amstrad

…he explains to her that Sinclair, the British inventor, had a way of getting things right, but also exactly wrong. Foreseeing the market for affordable personal computers, Sinclair decided that what people would want to do with them was to learn programming. The ZX81, marketed in the United States as the Timex 1000, cost less than the equivalent of a hundred dollars, but required the user to key in programs, tapping away on that little motel keyboard-sticker. This had resulted both in the short market-life of the product and, in Voytek’s opinion, twenty years on, in the relative preponderance of skilled programmers in the United Kingdom. They had had their heads turned by these little boxes, he believes, and by the need to program them. “Like hackers in Bulgaria,” he adds, obscurely.

“But if Timex sold it in the United States,” she asks him, “why didn’t we get the programmers?”

“You have programmers, but America is different. America wanted Nintendo. Nintendo gives you no programmers…”

— William Gibson, Pattern Recognition

A couple of years ago I ventured out of the man cave to give a talk about the Amiga at a small game-development conference in Oslo. I blazed through as much of the platform’s history as I could in 45 minutes or so, emphasizing for my audience of mostly young students from a nearby university the Amiga’s status as the preeminent gaming platform in Europe for a fair number of years. They didn’t take much convincing; even this crowd, young as they were, had their share of childhood memories involving Amiga 500s and 1200s. Mostly they seemed surprised that the Amiga hadn’t ever been all that terribly popular in the United States. During the question-and-answer session, someone asked a question that stopped me short: if American kids hadn’t been playing games on their Amigas, just what the hell had they been playing on?

The answer itself wasn’t hard to arrive at: the sorts of kids who migrated from 8-bit Sinclairs, Acorns, Amstrads, and Commodores to 16-bit Amigas and Atari STs in Britain made a much more lateral move in the United States, migrating to the 8-bit Nintendo Entertainment System.

More complex and interesting are the ramifications of these trends. Because the Atari VCS console was never a major presence in Britain and the rest of Europe during its heyday, and because Nintendo arrived only very belatedly, for many years videogames played in the home there meant games played on home computers. One could say much about how having a device useful for creation as well as consumption as the favored platform of most people affected the market across Europe. The magazines were filled with stories of bedroom gamers who had become bedroom coders and finally Software Stars. Such stories make a marked contrast to an American console-gaming magazine like Nintendo Power, all about consumption without the accompanying ethos of creation.

But most importantly for our purposes today, the relative neglect of Britain in particular by the big computing powers in the United States and Japan — for many years, Commodore was the only company of either nation to make a serious effort to sell their machines into British homes — gave space for a flourishing domestic trade in homegrown machines. When Britain became the nation with the most computers per capita on the planet at mid-decade, most of the computers in question bore the logo of either Acorn or Sinclair, the two great rivals at the heart of the young British microcomputer industry.

Acorn, co-founded by Clive Sinclair’s former right-hand man Chris Curry and an Austrian academic named Hermann Hauser, was an archetypal example of an engineering-driven company. Their machines were a little more baroque, a little better built, and consequently a little more expensive than they needed to be, while their public persona was reserved and just a little condescending, much like that of the BBC that had given its official imprimatur to Acorn’s most popular machine, the BBC Micro. Despite “Uncle Clive’s” public reputation as the British Inspector Gadget, Sinclair was just the opposite; cheap and cheerful, they had the common touch. Acorns sold to the educators, to the serious hobbyists, and to the posh, while Sinclairs dominated with the masses.

Yet Acorn and Sinclair were similar in one important respect: they were both in their own ways very poorly managed companies. When the British home-computer market hit an iceberg in 1985, both were caught in untenable positions, drowning in excess inventory. Acorn — quintessentially British, based in the storied heart of Britain’s “Silicon Fen” of Cambridge — was faced with a choice between dissolution and selling themselves to the Italian typewriter manufacturer Olivetti; after some hand-wringing, they chose the latter course. Sinclair also sold out: to the new kid on the block of British computing, Amstrad, owned by a gruff Cockney with a penchant for controversy named Alan Sugar who was well on his way to becoming the British Donald Trump.

Ever practical in their approach to technology, Amstrad made much of the CPC's bundled monitor in their advertising, noting that with the CPC Junior could play on the computer while the rest of the family watched television.

Ever mindful of the practical concerns of their largely working-class customers, Amstrad made much of the CPC’s bundled monitor in their advertising, noting that Junior could play on the CPC without tying up the family television.

Amstrad had already been well-established as a maker of inexpensive stereo equipment and other consumer electronics when their first computers, the CPC (“Colour Personal Computer”) line, debuted in June of 1984. The CPC range was created and sold as a somewhat more capable Sinclair Spectrum. It consisted of well-built and smartly priced if technically unimaginative computers that were fine choices for gaming, boasting as they did reasonably good if hardly revolutionary graphics and sound. Like most Amstrad products, they strained to be as easy to use as possible, shipping as complete units — tape or disk drive and monitor included — at a time when virtually all of their rivals had to be assembled piece by piece via separate purchases.

The CPC line did very well from the outset, even as Acorn and Sinclair were soon watching their own sales implode. Pundits attributed the line’s success to what they called “the Amstrad Effect”: Alan Sugar’s instinct for delivering practical products at a good price at the precise instant when the technology behind them was ready for the mass market — i.e., was about to become desirable to his oft-stated target demographic of “the truck driver and his wife.” Sugar preferred to let others advance the technical state of the art, then swoop in to reap the rewards of their innovations when the time was right. The CPC line was a great example of him doing just that.

But the most dramatic and surprising iteration of the Amstrad Effect didn’t just feed the existing market for colorful game machines; it found an entirely new market segment, one that Amstrad’s competitors had completely missed until now. The story of the creation of the Amstrad PCW line is a classic tale of Alan Sugar, a man who knew almost nothing about computers but knew all he needed to about the people who bought them.

One day just a few months after the release of the first CPC machines, Sugar found himself in an airplane over Asia with Bob Watkins, one of his most trusted executives. A restless Sugar asked Watkins for a piece of paper, and proceeded to draw on it a contraption that included a computer, a monitor, a disk drive, and a printer, all in one unit. Looking at the market during the run-up to the CPC launch, Sugar had recognized that the only true mainstream uses for the current generation of computers in the home were as game machines and word processors. With the CPC, he had the former application covered. But what about the latter? All of the inexpensive machines currently on the market, like the Sinclair Spectrum, were oriented toward playing games rather than word processing, trading the possibility of displaying crisp 80-column text for colorful graphics in lower resolutions. Meanwhile all of the more expensive ones, like the BBC Micro, were created by and for hardcore techies rather than Sugar’s truck drivers. If they could apply their patented technology-for-the-masses approach to a word processor for the home and small business — making a cheap, well-built, all-in-one design emphasizing ease of use for the common person — Amstrad might just have another hit on their hands, this time in a market of their own utterly without competition. Internally, the project was named after Sugar’s secretary Joyce, since it would hopefully make her job and those of many like her much easier. It would eventually come to market as the “PCW,” or “Personal Computer Word Processor.”

The first Amstrad PCW machine, complete with bundled printer.

The first Amstrad PCW machine, complete with bundled printer. Note how the disk drive and the computer itself are built into the same case as the monitor, a very unusual design for the period.

Even more so than the CPC, the PCW was a thoroughly underwhelming package for technophiles. It was build around the tried-and-true Z80 8-bit CPU and ran CP/M, an operating system already considered obsolete by big business, MS-DOS having become the standard in the wake of the IBM PC. The bundled word-processing software, contracted out to a company called Locomotive Software, wasn’t likely to impress power users of WordStar or WordPerfect overmuch — but it was, in keeping with the Amstrad philosophy, unusually friendly and easy to use. Sugar knew his target customers, knew that they “didn’t give a shit whether there was an elastic band or an 8086 or a 286 driving the thing. They wouldn’t know what you were talking about.”

As usual, most of Amstrad’s hardware-engineering efforts went into packaging and cost-cutting. It was decided that the printer would have to be housed separately from the system unit for technical reasons, but otherwise the finished machine conformed remarkably well to Sugar’s original vision. Best of all, it had a price of just £399. By way of comparison, Acorn’s most recent BBC Micro Model B+ had half as much memory and no disk drive, monitor, or printer included — and was priced at £499.

Nervous as ever about intimidating potential customers, Amstrad was at pains to market the PCW first and foremost as a turnkey word-processing solution for homes and small businesses, as a general-purpose computer only secondarily if at all. “It’s more than a word processor for less than most typewriters,” ran their tagline. At the launch event in the heart of the City in August of 1985, three female secretaries paraded across the stage: a snooty one who demanded one of the competition’s expensive computer systems; a tarty one who said a typewriter was more than good enough; and a smart, reasonable one who naturally preferred the PCW. Man-of-the-people Sugar crowed extravagantly that Amstrad had “brought word-processing within the reach of every small business, one-man band, home-worker, and two-finger typist in the country.” Harping on one of his favorite themes, he noted that once again Amstrad had “produced what the customer wants and not a boffin’s ego trip.”

Sugar’s aggressive manner may have grated with many buttoned-down trade journalists, but few could deny that he might just open up a whole new market for computers with the PCW. Electrical Retailer and Trader was typical, calling the PCW “a grown-up computer that does something people want, packaged and sold in a way they can understand, at a price they’ll accept.” But even that note of optimism proved far too mild for the reality of the machine’s success. The PCW exploded out of the gate, selling 350,000 units in the first eight months. It probably could have sold a lot more than that, but Amstrad, caught off-guard by the sales numbers despite their founder’s own bullishness on the product, couldn’t make and ship them fast enough.

Level 9's Time and Magic text adventure running on a PCW.

Level 9’s Time and Magik text adventure running on a PCW.

Surprisingly for such a utilitarian package, the PCW garnered considerable loyalty and even love among the millions in Britain and all across Europe who eventually bought one. Their enthusiasm was enough to sustain a big, glossy newsstand magazine dedicated to the PCW alone — an odd development indeed for this machine that seemed on the face of it to be anything but a hacker’s darling. A thriving software ecosystem that reached well beyond word processing sprung up around the machine. Despite the PCW’s monochrome display and virtually nonexistent animation and sound capabilities, even games were far from unheard of on the platform. For obvious reasons, text adventures in particular became big favorites of PCW owners; with its comfortable full-travel keyboard, its fast disk drive, its relatively cavernous 256 K of memory, and its 80-column text display, a PCW was actually a far better fit for the genre than the likes of a Sinclair Spectrum. The PCW market for text adventures was strong enough to quite possibly allow companies like Magnetic Scrolls and Level 9 to hang on a year or two longer than they might otherwise have managed.

So, Amstrad was already soaring on the strength of the CPC and especially the PCW when they shocked the nation and cemented their position as the dominant force in mainstream British computing with the acquisition of Sinclair in April of 1986. Eminently practical man of business that he was, Sugar bought Sinclair partly to eliminate a rival, but also because he realized that, home-computer slump or no, the market for a machine as popular as the Sinclair Spectrum wasn’t likely to just disappear overnight. He could pick up right where Uncle Clive had left off, selling the existing machine just as it was to new buyers who wanted access to the staggering number of cheap games available for the platform. Sugar thought he could make a hell of a lot of money this way while needing to expend very little effort.

Once again, time proved him more correct than even he had ever imagined. Driven by that huge base of games, demand for new Spectrums persisted into the 1990s. Amstrad repackaged the technology from time to time and, perhaps most importantly, dramatically improved on Sinclair’s infamously shoddy quality control. But they never seriously re-imagined the Spectrum. It was now what Sugar liked to call “a commodity product.” He compared it to suntan lotion of all things: the department stores “put it in their window in July and August and they take it away in the winter.” The Spectrum’s version of July and August was of course November and December; every Christmas sparked a new rush of sales to the parents of a new group of youngsters just coming of age and discovering the magic of videogames.

A battered and uncertain Acorn, now a subsidiary of Olivetti, faced a formidable rival indeed in Alan Sugar’s organization. In a sense, the fundamental dichotomies hadn’t changed that much since Amstrad took Sinclair’s place as the yin to Acorn’s yang. Acorn remained as technology-driven as ever, while Amstrad was all about giving the masses what they craved in the form of cheap computers that were technically just good enough. Amstrad, however, was a much more dangerous form of people’s computer company than had been their predecessor in the role. After releasing some notoriously shoddy stereo equipment under the Amstrad banner in the 1970s and paying the price in returns and reputation, Alan Sugar had learned a lesson that continued to elude Clive Sinclair: that selling well-built, reliable products, even at a price of a few more quid on the final price tag and/or a few less in the profit margin, pays off more than corner-cutting in the long run. Unlike Uncle Clive, who had bumbled and stumbled his way to huge success and just as quickly back to failure, Sugar was a seasoned businessman and a master marketer. The diffident boffins of Acorn looked destined to have a hard time against a seasoned brawler like Sugar, raised on the mean streets of the cutthroat Tottenham Court Road electronics trade. It hardly seemed a fair fight at all.

But then, in the immediate wake of their acquisition by Olivetti nothing at all boded all that well for Acorn. New hardware releases were limited to enhanced versions of the 1981-vintage, 8-bit BBC Micro line that were little more ambitious than Amstrad’s re-packagings of the Spectrum. It was an open secret that Acorn was putting much effort into designing a new CPU in-house to serve as the heart of their eventual next-generation machine, an unprecedented step in an industry where CPU-makers and computer-makers had always been separate entities. For many, it seemed yet one more example of Acorn’s boffinish tendencies getting the best of them, causing them to laboriously reinvent the wheel rather than do what the rest of the microcomputer world was doing: grabbing a 68000 from Motorola or an 80286 from Intel and just getting on with the 16-bit machine their customers were clamoring for. While Acorn dithered with their new chip, they continued to fall further and further behind Amstrad, who in the wake of the Sinclair acquisition had now gone from a British home-computer market share of 0 to 60 percent in less than two years. Acorn was beginning to look downright irrelevant to many Britons in the market for the sorts of affordable, practical computer systems Amstrad was happily providing them with by the bucketful.

Measured in terms of public prominence, Acorn’s best days were indeed already behind them; they would never recapture those high-profile halcyon days of the early 1980s, when the BBC Micro had first been anointed as the British establishment’s officially designated choice for those looking to get in on the ground floor of the computer revolution. Yet the new CPU they were now in the midst of creating, far from being a pointless boondoggle, would ultimately have a far greater impact than anything they’d done before — and not just in Britain but over the entire world. For the CPU architecture Acorn was creating in those uncertain mid-1980s was the one that has gone on to become the most popular ever: the ubiquitous ARM. Since retrofitted into “Advanced RISC Machine,” “ARM” originally stood for “Acorn RISC Machine.” Needless to say, no one at Acorn had any idea of the monster they were creating. How could they?

ARM, the chip that changed the world.

ARM, the chip that changed the world.

“RISC” stands for “Reduced Instruction Set Computer.” The idea didn’t originate with Acorn, but had already been kicking around American university and corporate engineering departments for some time. (As Hermann Hauser later wryly noted, “Normally British people invent something, and the exploitation is in America. But this is a counterexample.”) Still, the philosophy behind ARM was adhered to by only a strident minority before Acorn first picked it up in 1983.

The overwhelming trend in commercial microprocessor design up to that point had been for chips to offer ever larger and more complex instruction sets. By making “opcodes” — single instructions issued directly to the CPU — capable of doing more in a single step, machine-level code could be made more comprehensible for programmers and the programs themselves more compact. RISC advocates came to call this traditional approach to CPU architecture “CISC,” or “Complex Instruction Set Computing.” They believed that CISC was becoming increasingly counterproductive with each new generation of microprocessors. Seeing how the price and size of memory chips continued to drop significantly almost every year, they judged — in the long term, correctly — that memory usage would become much less important than raw speed in future computers. They therefore also judged that it would be more than acceptable in the future to trade smaller programs for faster ones. And they judged that they could accomplish exactly that trade-off by traveling directly against the prevailing winds in CPU design — by making a CPU that offered a radically reduced instruction set of extremely simple opcodes that were each ruthlessly optimized to execute very, very quickly.

A program written for a RISC processor might need to execute far more opcodes than the same program written for a CISC processor, but those opcodes would execute so quickly that the end result would still be a dramatic increase in throughput. Yes, it would use more memory, and, yes, it would be harder to read as machine code — but already fewer and fewer people were programming computers at such a low level anyway. The trend, which they judged likely only to accelerate, was toward high-level languages that abstracted away the details of processor design. In this prediction again, time would prove the RISC advocates correct. Programs may not even need to be as much larger as one might think; RISC advocates argued, with some evidence to back up their claims, that few programs really took full advantage of the more esoteric opcodes of the CISC chips, that the CISC chips were in effect being programed as if they were RISC chips much of the time anyway. In short, then, a definite but not insubstantial minority of academic and corporate researchers were beginning to believe that the time was ripe to replace CISC with RISC.

And now Acorn was about to act on their belief. In typical boffinish fashion, their ARM project was begun as essentially a personal passion project by Roger Wilson [1]Roger Wilson now lives as Sophie Wilson. As per my usual editorial policy on these matters, I refer to her as “he” and by her original name only to avoid historical anachronisms and to stay true to the context of the times. and Steve Furber, two key engineers behind the original BBC Micro. Hermann Hauser admits that for quite some time he gave them “no people” and “no money” to help with the work, making ARM “the only microprocessor ever to be designed by just two people.” When talks began with Olivetti in early 1985, ARM remained such a back-burner long-shot that Acorn never even bothered to tell their potential saviors about it. But as time went on the ARM chip came more and more to the fore as potentially the best thing Acorn had ever done. Having, almost perversely in the view of many, refused to produce a 16-bit replacement for the BBC Micro line for so long, Acorn now proposed to leapfrog that generation entirely; the ARM, you see, was a 32-bit chip. Early tests of the first prototype in April of 1985 showed that at 8 MHz it yielded an average throughput of about 3.5 MIPS, compared to 2.5 MIPS at 10 MHz for the 68020, the first 32-bit entry in Motorola’s popular 68000 line of CISC processors. And the ARM was much, much cheaper and simpler to produce than the 68020. It appeared that Wilson and Furber’s shoestring project had yielded a world-class microprocessor.

ARM made its public bow via a series of little-noticed blurbs that appeared in the British trade press around October of 1985, even as the stockbrokers in the City and BBC Micro owners in their homes were still trying to digest the news of Acorn’s acquisition by Olivetti. Acorn was testing a new “super-fast chip,” announced the magazine Acorn User, which had “worked the first time”: “It is designed to do a limited set of tasks very quickly, and is the result of the latest thinking in chip design.” From such small seeds are great empires sown.

The Acorn Archimedes

The Acorn Archimedes

The machine that Acorn designed as a home for the new chip was called the Acorn Archimedes — or at times, because Acorn had been able to retain the official imprimatur of the BBC, the BBC Archimedes. It was on the whole a magnificent piece of kit, in a different league entirely from the competition in terms of pure performance. It was, for instance, several times faster than a 68000-based Amiga, Macintosh, or Atari ST in many benchmarks despite running at a clock speed of just 8 MHz, roughly the same as all of the aforementioned competitors. Its graphic capabilities were almost as impressive, offering 256 colors onscreen at once from a palette of 4096 at resolutions as high as 640 X 512. So, Acorn had the hardware side of the house well in hand. The problem was the software.

Graphical user interfaces being all the rage in the wake of the Apple Macintosh’s 1984 debut, Acorn judged that the Archimedes as well had to be so equipped. Deciding to go to the source of the world’s very first GUI, they opened a new office for operating-system development a long, long way from their Cambridge home: right next door to Xerox’s famed Palo Alto Research Center, in the heart of California’s Silicon Valley. But the operating-system team’s progress was slow. Communication and coordination were difficult over such a distance, and the team seemed to be infected with the same preference for abstract research over practical product development that had always marked Xerox’s own facility in Palo Alto. The new operating system, to be called ARX, lagged far behind hardware development. “It became a black hole into which we poured effort,” remembers Wilson.

At last, with the completed Archimedes hardware waiting only on some software to make it run, Acorn decided to replace ARX with something they called Arthur, a BASIC-based operating environment very similar to the old BBC BASIC with a rudimentary GUI stuck on top. “All operating-system geniuses were firmly working on ARX,” says Wilson, “so we couldn’t actually spare any of the experts to work on Arthur.” The end result did indeed look like something put together by Acorn’s B team. Parts of Arthur were actually written in interpreted BASIC, which Acorn was able to get away with thanks to the blazing speed of the Archimedes hardware. Still, running Arthur on hardware designed for a cutting-edge Unix-like operating system with preemptive multitasking and the whole lot was rather like dropping a two-speed gearbox into a Lamborghini; it got the job done, after a fashion, but felt rather against the spirit of the thing.

When the Archimedes debuted in August of 1987, its price tag of £975 and up along with all of its infelicities on the software side gave little hope to those not blinded with loyalty to Acorn that this extraordinary machine would be able to compete with Amstrad’s good-enough models. The Archimedes was yet another Acorn machine for the boffins and the posh. Most of all, though, it would be bought by educators who were looking to replace aging BBC Micros and might still be attracted by the BBC branding and the partial compatibility of the new machine with the old, thanks to software emulators and the much-loved BBC BASIC still found as the heart of Arthur.

Even as Amstrad continued to dominate the mass market, a small but loyal ecosystem sprang up around the Archimedes, enough to support a software scene strong on educational software and technical tools for programming and engineering, all a natural fit for the typical Acorn user. And, while the Archimedes was never likely to become the first choice for pure game lovers, a fair number of popular games did get ported. After all, even boffins and educators — or, perhaps more likely, their students — liked to indulge in a bit of pure fun sometimes.

In April of 1989, after almost two long, frustrating years of delays, Acorn released a revision of Arthur comprehensive enough to be given a whole new name. The new RISC OS incorporated many if not all of the original ambitions for ARX, at last providing the Archimedes with an attractive modern operating system worthy of its hardware. But by then, of course, it was far too late to capture the buzz a more complete Archimedes package might have garnered at its launch back in 1987.

Much to the frustration of many of their most loyal customers, Acorn still seemed not so much inept at marketing their wares to the common person as completely disinterested in doing so. It was as if they felt themselves somehow above it all. Perhaps they had taken a lesson from their one earlier attempt to climb down from their ivory tower and sell a computer for the masses. That attempt had taken the form of the Acorn Electron, a cut-down version of the BBC Micro released in 1983 as a direct competitor to the Sinclair Spectrum. Poor sales and overproduction of the Electron had been the biggest single contributor to Acorn’s mid-decade financial collapse and the loss of their independence to Olivetti. Having survived that trauma (after a fashion), Acorn seemed content to tinker away with technology for its own sake and to let the chips fall where they would when it came to actually selling the stuff that resulted.

Alan Sugar shows off the first of his new line of PC clones.

Alan Sugar shows off the first of his new line of PC clones.

If it provided any comfort to frustrated Acorn loyalists, Amstrad also began to seem more and more at sea after their triumphant first couple of years in the computer market. In September of 1986, they added a fourth line of computers to their catalog with the release of the PC — as opposed to PCW — range. The first IBM clones targeted at the British mass market, the Amstrad PC line might have played a role in its homeland similar to that of the Tandy 1000 in the United States, popularizing these heretofore business-centric machines among home users. As usual with Amstrad, the price certainly looked right for the task. The cheapest Amstrad PC model, with a generous 512 K of memory but no hard drive, cost £399; the most expensive, which included a 20 Mb hard drive, £949. Before the Amstrad PC’s release, the cheapest IBM clone on the British market had retailed for £1429.

But, while not a flop, the PC range never took off quite as meteorically as some had expected. For months the line was dogged by reports of overheating brought on by the machine’s lack of a fan (shades of the Apple III fiasco) that may or may not have had a firm basis in fact. Alan Sugar himself was convinced that the reports could be traced back to skulduggery by IBM and other clone manufacturers trying to torpedo his cheaper machines. When he finally bowed to the pressure to add a fan, he did so as gracelessly as imaginable.

I’m a realistic person and we are a marketing organization, so if it’s the difference between people buying the machine or not, I’ll stick a bloody fan in it. And if they say they want bright pink spots on it, I’ll do that too. What is the use of me banging my head against a brick wall and saying, “You don’t need the damn fan, sunshine?”

But there were other problems as well, problems that were less easily fixed. Amstrad struggled to source hard disks, which had proved a far more popular option than expected, resulting in huge production backlogs on many models. And, worst of all, they found that they had finally overreached themselves by setting the prices too low to be realistically sustainable; prices began to creep upward almost immediately.

For that matter, prices were creeping upward across Amstrad’s entire range of computers. In 1986, after years of controversy over the alleged dumping of memory chips into the international market on the part of the Japanese semiconductor industry, the United States pressured Japan into signing a trade pact that would force them to throttle back their production and increase their prices. Absent the Japanese deluge, however, there simply weren’t enough memory chips being made in the world to fill an ever more voracious demand. By 1988, the situation had escalated into a full-blown crisis for volume computer manufacturers like Amstrad, who couldn’t find enough memory chips to build all the computers their customers wanted — and certainly not at the prices their customers were used to paying for them. Amstrad’s annual sales declined for the first time in a long time in 1988 after they were forced to raise prices and cut production dramatically due to the memory shortage. Desperate to secure a steady supply of chips so he could ramp up production again, Sugar bought into Micron Technology, one of only two American firms making memory chips, in October of 1988 to the tune of £45 million. But within a year the memory-chip crisis, anticipated by virtually everyone at the time of the Micron buy-in to go on for years yet, petered out when factories in other parts of Asia began to come online with new technologies to produce memory chips more cheaply and quickly than ever. Micron’s stock plummeted, another major loss for Amstrad. The buy-in hadn’t been “the greatest deal I’ve ever done,” admitted Sugar.

Many saw in the Amstrad of these final years of the 1980s an all too typical story in business: that of a company that had been born and grown wildly as a cult of personality around its founder, until one day it got too big for any one man to oversee. The founder’s vision seemed to bleed away as the middle managers and the layers of bureaucracy moved in. Seduced by the higher profit margins enjoyed by business computers, Amstrad strayed ever further from Sugar’s old target demographic. New models in the PC range crept north of £1000, even £2000 for the top-of-the-line machines, while the more truck-driver-focused PCW and CPC lines were increasingly neglected. The CPC line would be discontinued entirely in 1990, leaving only the antique Spectrum to soldier on for a couple more years for Amstrad in the role of general-purpose home computer. It seemed that Amstrad at some fundamental level didn’t really know how to go about producing a brand new machine in the spirit of the CPC in this era when making a new home computer was much more complicated than plugging together some off-the-shelf chips and hiring a few hackers to knock out a BASIC for the thing. Amstrad would continue to make computers for many years to come, but by the time the 1990s dawned their brief-lived glory days of 60 percent market share were already fading into the rosy glow of nostalgia.

For all their very real achievements over the course of a very remarkable decade in British computing, Acorn and Amstrad each had their own unique blind spot that kept them from achieving even more. In the Archimedes, Acorn had a machine that was a match for any other microcomputer in the world in any application you cared to name, from games to business to education. Yet they released it in half-baked form at too high a price, then failed to market it properly. In their various ranges, Amstrad had the most comprehensive lineup of computers of anyone in Britain during the mid- to late-1980s. Yet they lacked the corporate culture to imagine what people would want five years from now in addition to what they wanted today. The world needs visionaries and commodifiers alike. What British computing lacked in the 1980s was a company capable of integrating the two.

That lack left wide open a huge gap in the market: space for a next-generation home computer with a lot more power and much better graphics and sound than the likes of the old Sinclair Spectrum, but that still wouldn’t cost a fortune. Packaged, priced, and marketed differently, the Archimedes might have been that machine. As it was, buyers looked to foreign companies to provide. Neglected as Europe still was by the console makers of Japan, the British punters’ choice largely came down to one of two American imports, the Commodore Amiga and the Atari ST. Both — especially the former — would live very well in this gap that neither Acorn nor Amstrad deigned to fill for too long. Acorn did belatedly try with the release of the Archimedes A3000 model in mid-1989 — laid out in the all-in-one-case, disk-drive-on-the-side fashion of an Amiga 500, styled to resemble the old BBC Micro, and priced at a more reasonable if still not quite reasonable enough £745. But by that time the Archimedes’s fate as a boutique computer for the wealthy, the dedicated, and the well-connected was already decided. As the decade ended, an astute observer could already detect that the wild and woolly days of British computing as a unique culture unto itself were numbered.

The Archimedes A3000 marked the end of an era, the last Acorn machine to also bear the BBC logo.

The Archimedes A3000 marked the end of an era, the last Acorn machine to bear the BBC logo.

And that would be that, but for one detail: the fairly earth-shattering detail of ARM. The ARM CPU’s ability to get extraordinary performance out of a relatively low clock speed had a huge unintended benefit that was barely even noticed by Acorn when they were in the process of designing it. In the world of computer engineering, higher clock speeds translate quite directly into higher power usage. Thus the ARM chip could do more with less power, a quality that, along with its cheapness and simplicity, made it the ideal choice for an emerging new breed of mobile computing devices. In 1990 Apple Computer, hard at work on a revolutionary “personal digital assistant” called the Newton, came calling on Acorn. A new spinoff was formed in November of 1990, a partnership among Acorn, Apple, and the semiconductor firm VLSI Technology, who had been fabricating Acorn’s ARM chips from the start. Called simply ARM Holdings, it was intended as a way to popularize the ARM architecture, particularly in the emerging mobile space, among end-user computer manufacturers like Apple who might be leery of buying ARM chips directly from a direct competitor like Acorn.

And popularize it has. To date about ten ARM CPUs have been made for every man, woman, and child on the planet, and the numbers look likely to continue to soar almost exponentially for many years to come. ARM CPUs are found today in more than 95 percent of all mobile phones. Throw in laptops (even laptops built around Intel processors usually boast several ARM chips as well), tablets, music players, cameras, GPS units… well, you get the picture. If it’s portable and it’s vaguely computery, chances are there’s an ARM inside. ARM, the most successful CPU architecture the world has ever known, looks likely to continue to thrive for many, many years to come, a classic example of unintended consequences and unintended benefits in engineering. Not a bad legacy for an era, is it?

(Sources: the book Sugar: The Amstrad Story by David Thomas; Acorn User of July 1985, October 1985, March 1986, September 1986, November 1986, June 1987, August 1987, September 1987, October 1988, November 1988, December 1988, February 1989, June 1989, and December 1989; Byte of November 1984; 8000 Plus of October 1986; Amstrad Action of November 1985; interviews with Hermann Hauser, Sophie Wilson, and Steve Furber at the Computer History Museum.)

Footnotes

Footnotes
1 Roger Wilson now lives as Sophie Wilson. As per my usual editorial policy on these matters, I refer to her as “he” and by her original name only to avoid historical anachronisms and to stay true to the context of the times.
 

Tags: , , ,

Micro Men

For practical purposes, the British PC industry lagged about three years behind the American. It wasn’t that it was impossible to buy a modern American machine. Commodore alone sold some 45,000 PET systems in Britain in that platform’s first three years of availability, and, while they were less common, you could certainly buy imported TRS-80s, Apple IIs, and Atari 400s and 800s if you had the money. But it’s that last part that’s key here. At a time when the pound was worth around $2.50, even the most bare-bones PET system would set you back at least £650, while an Apple II system of the type that was pretty much the expected standard in America by 1981 — a II Plus with 48 K, a color monitor, two floppy drives, perhaps a printer — would quickly climb to around the £2000 mark. To fully understand just how out of reach these prices made computers for the average Briton, you have to understand something about life there in the late 1970s and early 1980s.

The British economy hadn’t really been good for quite some years, suffering along with the rest of country from a sort of general post-empire malaise punctuated by occasional embarrassing shocks like the Three-Day Week (1974), when chronic energy shortages forced the government to mandate that business could only open three days in the week, and the Winter of Discontent (1978-79), when strikes across a whole range of industries brought the economy and, indeed, daily life to a virtual standstill. The latter events were sufficient to ensure the election as Prime Minister of perhaps the most polarizing figure in postwar British political history, Margaret Thatcher, on a platform that promised to drag Britain into the modern age, if necessary kicking and screaming, by rolling back most of the welfare state that had been erected in the aftermath of World War II. Yet nothing got better in the immediate wake of Thatcher’s election. In fact, as the government imposed harsh austerity measures and much of the country’s remaining industrial base collapsed under privatization, they just continued to get worse. By 1981 unemployment was at 12.5%, entire cities were reduced to industrial wasteland, riots were becoming a daily reality, and Thatcher was beset by howling mobs virtually everywhere she went. It felt like something more than just a serious recession; it felt dangerous. That summer The Specials summed up the mood of the country in the apocalyptic, chart-topping “Ghost Town.” Things would get slowly, painfully better after that low point, but it would be nearly a decade before unemployment shrunk to reasonable levels and the modern economy Thatcher had promised really took hold with the beginning of the era of “cool Britannia.”

Suffice to say, then, that most Britons would not have been able to afford American computers even if they were priced in line with what Americans paid for them. While PETs were sold to businesses and TRS-80s and Apple IIs to the handful of wealthy eccentrics who could afford them, a parallel domestic industry arose to serve everyday users at prices they could afford. It began in 1978, three years after the Altair in North America, with a handful of do-it-yourself kits that let hobbyists solder together contraptions of toggle switches and blinking lights. The British equivalent of the trinity of 1977 then arrived, right on schedule, in 1980.

So many characters from the early PC era are larger than life, and their photos seem to say it all about them. You’ve got, for example, Steve Jobs, the glib, handsome charmer whom you wouldn’t quite trust with your daughter.

You’ve got Jack Tramiel, who (Jewishness aside) looks like he should be sitting behind a mound of spaghetti mumbling about breaking kneecaps.

And you’ve got the man history remembers as the first to bring affordable computers to the British public, Sir Clive Sinclair. He looks like a mad genius inventor who should be making gadgets for James Bond — or maybe Maxwell Smart. If you left him alone at your house you’d probably return to find the cat on fire and the daughter’s hair turned blue.

Despite having absolutely no formal training, Sinclair graduated from gigs writing for electronics magazines in 1961 to found Sinclair Radionics, a firm with the perfect name for a mad scientist’s workshop. After years spent selling kits for making radios, amplifiers, test equipment, and the like to hobbyists, Sinclair Radionics started a consumer-electronics line, for which, as (once again) befitted any proper mad scientist, they produced groundbreaking gadgets with absurd design flaws and about the worst quality control imaginable. There was the Sinclair Executive, one of the first calculators small enough to fit in a pocket, but which had an unfortunate tendency to explode (!) when left on too long. And there was the Microvision, a portable television. Unfortunately, Sinclair had neglected to ask just who the hell really wanted to watch TV on a 2″ black-and-white screen, and it was a commercial flop.

But the stereotypical — or satirical — Sinclair product was the Black Watch.

On the plus side, it was one of the first digital wristwatches. On the negative side — gee, where to start? The Black Watch was chronically unreliable in actually, you know, keeping time, never a good feature in a watch; it was apparently very susceptible to climate changes, running at different speeds in different seasons. Batteries lasted for a solid ten days if you were lucky, and were almost as hard to replace as the watch had been to assemble in the first place. (Like many Sinclair products, it was available as a do-it-yourself kit as well as in pre-assembled form). It had a tendency to literally fall to pieces all at once as the clips that held it together fatigued. But even that wasn’t the worst possible failure. In what was becoming a Sinclair trademark, the Black Watch was also known to explode without warning.

Released in late 1975, the Black Watch fiasco combined with the onslaught of cheap calculators from Japan marked the beginning of the end of Sinclair Radionics. Britain’s National Enterprise Board bought a majority interest in 1977, but quickly found Clive to be all but impossible to deal with, and found the hoped-for turnaround a tough nut to crack. The NEB finally pulled the plug on the company in the wake of Thatcher’s election; this sort of mixing with private business was of course under Thatcher’s new paradigm exactly what the government should not be doing. By that time Clive had already started another company on the sly to wriggle free of government interference with his management decisions. He named it Science of Cambridge to keep its guiding hand at least somewhat under wraps. This was the company that would start the PC boom in Britain.

For an exaggerated but entertaining picture of Clive Sinclair the man, I’ll point you to the show whose title I stole for this post, the BBC one-off Micro Men. He was a genuinely talented inventor with a flair for the art of the possible and a determination to bring out products at prices that ordinary people could afford — a populist in the best sense of the word. He was also stupefyingly stubborn and arrogant, one of those supremely tedious people who love to talk about their IQ scores. (He was chairman of British Mensa for almost two decades.) In a typical interview for Your Computer magazine in 1981, he said, “I make mistakes, everyone does, but I never make them twice.” Someone of more average intelligence — like for instance your humble blogger here — might beg to differ that his history of exploding products would seem to point to a man who kept making the same mistakes over and over, thinking he could avoid the perspiration of polishing and perfecting through the inspiration of his initial brilliant idea. But what do I know?

Sinclair had been involved with some of those blinking-box computer kits I mentioned earlier, but he first entered the computer market in a big way with the release of the ZX80 in early 1980, the £100 machine I mentioned in an earlier post as Jack Tramiel’s inspiration for the Commodore VIC-20. Indeed, there are some similarities between the two men, both egocentric executives who were forced out of the calculator market by the cheaper Japanese competition. Yet we shouldn’t push the comparison too far. Sinclair was, to use the British term, a thoroughgoing boffin, filled with childlike enthusiasm for gadgets and for technology’s social potential. Tramiel, however, was all businessman; he would, to paraphrase one of Steve Jobs’s most famous pitches, have been perfectly happy to sell sugared water for his entire life if that gave him the competition he craved.

The ZX80 was, once again, available as either a semi-assembled kit or, for somewhat more, a completed product ready to plug in and use. With its tiny case and its membrane keyboard, it looked more like a large calculator than a computer. Indeed, its 1 K of standard RAM meant that it wasn’t good for much more than adding numbers until the user sprang for an expansion. Its standard BASIC environment was bizarre and seemed almost willfully unfriendly, and it was beset by the usual Sinclair reliability problems, with overheating a particular concern. (At least there were no reports of exploding ZX80s…) The design was so minimal that it didn’t even have a video chip, but rather relied on the CPU to generate a video signal entirely in software. From this stemmed one of its most unique “features”: because the CPU could only generate video when it was not doing something else, the screen went blank whenever a program was actually running, even momentarily every time the user hit a key. But it was a real computer, the first really within reach for the majority of Britons. Sinclair sold 100,000 of them in less than eighteen months.

Science of Cambridge was not the only British company to make a splash in the burgeoning home-computer market in 1980. Another young company, Acorn Computers, released its own machine, the Acorn Atom, later that year.

The Atom cost about 50% more than the ZX80, but was still vastly less than any of the American machines. The extra money bought you a much more usable computer, with a proper keyboard, twice the RAM (even if 2 K was still sadly inadequate for actually doing much of anything), a display that didn’t flick on and off, and a less, shall we say, idiosyncratic interpretation of BASIC. The competition between Sinclair and Acorn was personal. The head of Acorn, Chris Curry, had been for some twelve years Clive Sinclair’s right-hand man. The two had parted ways in late 1978, ironically because Curry wanted to produce a new microcomputer that Sinclair did not (yet) see the potential of. Curry went on to form Acorn with a partner, Hermann Hauser, and barely a year later — Sinclair having suddenly gotten the microcomputer religion — was going toe to toe with his erstwhile boss and mentor.

The following year, 1981, would prove a pivotal one. Sinclair, who changed the name of his company that year to Sinclair Research in the wake of Sinclair Radionics dissolution, introduced the ZX81 in March, an evolution of the ZX80 design that further reduced the price to just £50 in kit form, £70 fully assembled.

Amongst other modest improvements, the ZX81 could run in “slow” mode, in which enough CPU time was always reserved to update the display, eliminating the screen blanking at the cost of dramatically slower CPU throughput. And it could handle floating-point numbers, an impossibility on the ZX80. Of course, it was also a Sinclair product, with everything that entailed. The 16 K RAM expansion didn’t quite fit into its socket correctly; it would occasionally fall out of place with disastrous results. Actually, most of the connections had similar if less acute problems, forcing one to tiptoe gingerly around the machine. (Presumably those living near train tracks were just out of luck.)

The Commodore VIC-20 also arrived that year, at an initial price of about £180. Very much a lowest end of low-end machines in North America, the VIC-20 with its 5 K of RAM and color graphics capabilities was considerably more capable than either the unexpanded Sinclair or Acorn; thus the comparatively high price.

In North America, we saw the emergence of a commercial software market in 1978, as hobbyists like Scott Adams began packaging their programs on cassette tapes in Ziploc baggies and selling them. True to the three-year rule, a domestic British software market began to emerge in 1981, with a similar do-it-yourself personality of hand-copied cassettes and improvised packaging. (One could hear the creators’ children playing and similar background noises on some of these “data” tapes.) Software of course largely meant games, and a big part of games was text adventures.

A very good candidate for the first homegrown British example of the form is Planet of Death, a game for the ZX80 and ZX81 released around June of 1981 by Artic Software, a company formed by two university students, Richard Turner and Chris Thornton, the year before. Unlike the earliest American text-adventure coders, Turner and Thornton had plenty of examples to follow, thanks to their Video Genie computer, a Hong Kong-manufactured clone of the TRS-80 Model 1 that became more popular than the real thing in Britain. (In fact, they did their coding on the Genie, which shared the Sinclair machines’ Zilog Z-80 processor, and transferred their work to the more primitive Sinclairs.) The Artic adventure line, of which Planet of Death was the first, shows a marked Scott Adams influence, from the instructions insert that calls the player’s avatar her “puppet” to Artic’s system of numbering its adventures to help the devoted assemble a complete collection. (One difference: Artic used letters instead of numbers. Thus Planet of Death is Adventure A.)

Planet of Death doesn’t cut a very inspiring figure as the first example of British ludic narrative. Mostly it makes you appreciate its inspiration; whatever his other failings, Scott Adams always finished his games before he released them. Planet of Death plays like something you might find sloshing around the bottom of one of the modern IF Competitions, albeit without the built-in technical competency modern IF languages like Inform bring to the table. It’s as if Turner and Thornton ran out of memory and simply stopped where they were — which, come to think of it, is likely exactly what happened. You’ve got bugs galore, a maze that’s doubly frustrating because it ultimately leads nowhere, red herrings and half-finished puzzles, all wired up to an unusually obtuse two-word parser that thinks “with” is a verb. Yet, just as the ZX80 and ZX81 were real computers, however limited an implementation thereof, Planet of Death was a real adventure game, the first most of the British public had seen, and it sold well enough to spawn a whole line from Artic. It stands at the origin of an adventure-game scene that would become if anything even more vital and prolific than that in the U.S. — one we’ll be following in later posts.

In an important signifier of the growing acceptance of PCs in Britain, the omnipresent High Street newsstand chain WH Smith began selling the ZX81 in its stores with the arrival of the 1981 holiday season, billing it as “your first step into personal computing.” Just as the arrival of the VIC-20 in K-Mart stores in North America signaled a similar paradigm shift there, mainstream British stores would soon be stocking not just Sinclairs but also Acorns and Commodores. Within a few years British computer sales would surpass those in the U.S. on a per capita basis, as Britain became the most computer-mad nation on Earth. We’ll get back to that. For next time, though, we’ll return to the U.S. to look at the last major computer introduction of 1981, and the most long-lived and important of all.

 

Tags: , ,