
		
			
				Jimmy Maher
				(maher@filfre.net)
			

			
				The Digital Antiquarian
Volume 2: 1980
			

			
				
					Read the blog

					http://www.filfre.net
				

				
					Support the blog on Patreon

					https://www.patreon.com/DigitalAntiquarian
				

				
					This eBook was converted on

					December 20th, 2015
				

				
					Design and conversion for eBooks by

					Richard Lindner (rlindner81@gmail.com)
				

			

		
	
		Contents

		
			
					
					A Busy 1980
				

					
					Robert Lafore’s Interactive Fiction
				

					
					Binning the Trash-80
				

					
					Jobs and Woz
				

					
					The Apple II
				

					
					Eamon, Part 1
				

					
					A Journey into the Wonderful World of Eamon
				

					
					Eamon, Part 2
				

					
					Ken and Roberta
				

					
					Mystery House, Part 1
				

					
					Mystery House, Part 2
				

					
					On-Line Systems is Born
				

					
					The Wizard and the Princess, Part 1
				

					
					The Wizard and the Princess, Part 2
				

					
					DunjonQuest
				

					
					Edu-Ware
				

					
					Interactive Fantasies
				

					
					The Prisoner, Part 1
				

					
					The Prisoner, Part 2
				

					
					A Word on Akalabeth and Chronology
				

					
					Lord British
				

					
					Akalabeth
				

					
					California Pacific
				

					
					The Roots of Infocom
				

					
					Zork on the PDP-10
				

					
					The Birth of Infocom
				

					
					ZIL and the Z-Machine
				

					
					Selling Zork
				

					
					Parser Games
				

					
					Exploring Zork, Part 1
				

					
					Exploring Zork, Part 2
				

					
					Exploring Zork, Part 3
				

			

		
	
		
			
				A Busy 1980

				August 26, 2011
			

When we last left Scott Adams at the end of 1979, he was poised to take this adventuring thing to the proverbial next level, with a solid catalog of games already available on a number of platforms, with perhaps the best name recognition in the nascent computer-game industry, and with a new company — Adventure International — ready to publish his works and the works of others under its own imprint. The following year saw him realize all of that potential and more, to take a place at the forefront of a new industry.

Adventure International grew by leaps and bounds for the next few years, while always remaining, like everything Adams touched, indelibly stamped with the personality of its founder. AI was the Dollar General of the early software industry. Its catalogs are filled with a ramshackle collection of software of every stripe. In addition to the expected text adventures from Adams and others (many of these also using Adams’s engine), there were arcade clones (“far superior to any Space Invader game for the TRS-80 microcomputer so far”, announces the blurb for Invaders Plus, with more honesty than legal wisdom); space strategy games (Galactic Empire and Galactic Trader); chess programs (“although a graphic display of the chess board is provided, it is recommended than actual chess board be used during play…”); board game adaptations (Micropoly, which is once again foolish enough to advertise that it is a clone of Monopoly right in the promotional text); even TRS-80 Opera, which let one listen to the William Tell overture via a transistor radio set in close proximity to the machine’s cassette port (the TRS-80’s lack of proper RF shielding was not always such a bad thing). And for when fun-and-games time was over, there were also math programs, print spoolers, programming tools, drawing programs, and educational software to hand, the latter evincing the usual fascination with states and their capitals that was so common amongst early programmers. All of this software was relatively cheap, with $9.95 or $14.95 being the most common price points, and somewhat… variable… in quality. Still, there was a thrill to be had in walking the virtual aisles of the AI catalogs, gazing at the shelves groaning with the output of a expanding new industry, wondering what crazy (not to say hare-brained) idea would be around the next bend. Hovering over the whole scene was always the outsized personality of Adams himself, who would remain throughout AI’s brief but busy lifetime an unusually visible company leader. (A reading of the legal fine print shows AI itself to be merely “a division of Scott Adams, Inc.”)

The year 1980 represents an important historical moment for the entertainment-software industry. A few exceptions such as Microsoft and Automated Simulations aside, computer games had previously been distributed as a sideline by semi-amateurs who hung their Ziploc baggies up in the local computer store and signed up with the hobbyist distribution services run by SoftSide and Creative Computing magazines. Now, though, companies like AI and a few others that sprung up around the same time began to professionalize the field. Within a few years the Ziploc baggies would be replaced with slick, colorful boxes stuffed with glossy manuals and other goodies, and the semi-amateurs in their home offices and bedrooms with real development studios whose members did this stuff for a living. Computer games were becoming a viable business, bringing more resources onto the scene that would soon allow for bigger and more ambitious creations than anything yet seen, but also bringing all the complications and loss of innocence associated with monetizing a labor of love.

In light of the explosive growth of his company, it’s no surprise that Adams’s creation of new adventures slowed down dramatically at this point. Some of his energy was consumed — and not for the last time — with repackaging his already extant games. All received pen-and-watercolor cover illustrations courtesy of an artist known as “Peppy,” whose colorful if unpolished style perfectly suited the gonzo enthusiasm of Adams’s prose.

[image:]

[image:]

[image:]

AI released just two new Adams-penned adventures in 1980: the Western pastiche Ghost Town in the spring and Savage Island Part One, first of a two-parter advertised as difficult enough for the hardcore of the hardcore, just in time for Christmas. I thought we’d take a closer look at the first of these to see how far Adams’s art had progressed since The Count.

The simple but painful answer to that question is: not at all, really. In fact, it has regressed in many ways. The Western setting was apparently merely the next on Adams’s list of genre touchstones to cover, as it does little to inform the experience of play. Ghost Town is a plotless treasure hunt, just like Adventureland; it’s as if the The Count never happened: “Drop treasures then score.” Sigh.

[image:]

We rob the saloon of its cash box just because it’s there. Double sigh.

[image:]

Worse, even as a treasure hunt Ghost Town is neither entertaining nor satisfying. A few quips such as the response to trying to GO MIRROR (“I’m not Alice!”) aside, Ghost Town has lost some of the friendly warmth that made one somewhat willing to forgive the earlier games their own dodgy moments. The useful HELP command with its little nudges and food for thought has disappeared entirely, while the puzzles have devolved into a veritable catalog of design sins. Adams had been slowly ramping up the difficulty of each successive game that he wrote, apparently expecting his player to work through the games in order and thus to be prepared by the time they faced Ghost Town. I suppose that’s a reasonable enough approach in the abstract, but in reality there is no way to train for the puzzles in Ghost Town. Even some of the least objectionable require considerable outside knowledge, of things like the composition of gunpowder or the translation of Morse code.

[image:]

Of course, in 1980, a time when Wikipedia was not a browser bookmark away, tracking down this sort of information might require a trip to the local library.

Other puzzles require us to see the room in question exactly as Adams pictured it, despite his famously terse room descriptions that do little more than list the objects therein. Still others reward only dogged persistence rather than insight, such as requiring us to tote a shovel around the map and dig in every single room to see whether anything turns up. Yet more, the worst of all, are protracted battles with the parser. How long it would take the average player to divine that she must SAY GIDYUP to get the horse to move is something I don’t even want to think about — nor how long she might fruitlessly try mixing the charcoal, sulfur, and saltpeter together before finally just typing MAKE GUNPOWDER. At times the parser seems not just technically limited but intentionally cruel.

[image:]

Typing just GUNPOWDER as opposed to WITH GUNPOWDER at the above prompt results in a generic failure message. My experience with Ghost Town makes me more enamored than ever of the idea that these early games were simply too technologically limited to support difficult puzzles that were also fair and logically tenable, that ramping up their difficulty beyond a certain rather low threshold inevitably resulted in nonsense like so many of the puzzles in Ghost Town and the absurd end-game of Adventure.

It’s also tempting to conclude that Adams himself simply lacked the vision to continue to push the text adventure forward. Tempting, but not entirely correct. For a couple of years Adams wrote an occasional column for SoftSide magazine. In the November, 1980, addition he announced a planned new adventuring system called Odyssey, which would take advantage of disk-drive-equipped systems in the same way as did Microsoft Adventure, using all of that storage space as an auxiliary memory store. His plans were ambitious to say the least:

1. More than one player in an Odyssey at one time. Players may help (or hinder) one another as they see fit!

2. Full paragraphs instead of “baby talk,” e.g., “Shoe the horse with the horseshoe and the hammer and nails.”

3. Longer messages;

4. sound effects; and

5. expanded plot lines.

To develop this system I have actually had to develop a new type of computer language which I call OIL (Odyssey Interpretive Language) which is implemented by a special Odyssey assembler that generates Odyssey machine code. This machine code is then implemented on each different micro, e.g. Apple, TRS-80, etc., through a special host emulator to simulate my nonexistent Odyssey computer.

Currently (as of the Washington computer show, Sept., 1980) the system is in the final stages of implementing a host emulator on a TRS-80 32 K disk system and writing the first Odyssey (which has been sketched out and is tentatively entitled Martian Odyssey) in OIL to run on the emulator. I hope that by the time your are reading this, Odyssey Number One will be available from your local computer store of favorite mail order house.

The technical conception of Odyssey sounds remarkably similar to what would soon be rolled out by a tiny Massachusetts startup called Infocom. Interestingly, Marc Blank and Stu Galley of Infocom had laid out in the abstract the design of their virtual machine, the “Z-Machine,” in an article in Creative Computing just a couple of months before Adams wrote these words. Could he have been inspired by that article?

Whatever the answer to that question, Martian Odyssey of course never appeared, and to my knowledge Adams never mentioned the Odyssey system again. For better and (ultimately) for worse, he elected to stick with what had brought him this far — meaning treasure hunts runnable on low-end 16 K computers equipped only with cassette drives. That strategy would continue to pay off handsomely enough for a few more years, yet it’s hard not to wonder about the path not taken, the territory ceded without a fight to Infocom and others. From 1980 on, Adams is more interesting as a businessman and an enabler for others than as a software artist in his own right. On that note, I want to talk about a few of the more interesting creations to stand alongside Adams’s own adventures in the jumble of the Adventure International catalog next time.

If you’d like to try Ghost Town, here’s a version you can load into the MESS emulator using its “Devices -> Quickload” function.

							
		
	
		
			
				Robert Lafore’s Interactive Fiction

				September 1, 2011
			

Quick: Who first coined the term interactive fiction? And why?

Assuming you had an answer at all, and assuming you’re a loquacious git like me, it may have run something like this:

The term originated, many years after the birth of the genre it describes, in the early 1980s with a company called Infocom. At that time, games of this sort were commonly known as “adventure games” or “text adventures,” the latter to distinguish them from the graphical brand of story-based games which were just beginning to compete with text-based titles in the marketplace of that time. Indeed, both terms are commonly used to this day, although they generally connote a rather “old-school” form of the genre that places most of its emphasis on the more gamelike, as opposed to literary, potentials of the form. Infocom decided that interactive fiction was a term which more accurately described their goal of creating a viable new literary form, and following that company’s demise the term was appropriated by a modern community of text-based storytellers who in many ways see themselves as heirs to Infocom’s legacy.

That, anyway, is what I wrote five years ago in my history of interactive fiction. I still think it describes pretty accurately Infocom’s motivation for replacing the term text adventure with IF, but it’s inaccurate in one important sense: the term did not actually originate with Infocom. It was rather the creation of a fellow named Robert Lafore, who founded a company under that name in 1979 and published software from 1980 to 1982 through Scott Adams’s Adventure International. By the time that Lafore came to AI, he already had three titles in the line ready to go. Local Call for Death and Two Heads of the Coin are mystery stories with an obvious debt to Dorothy L. Sayers’s Lord Peter Wimsey and Arthur Conan Doyle’s Sherlock Holmes respectively, while Six Micro-Stories presents six brief vignettes in a variety of settings and genres. Over the next year or so he wrote two more: His Majesty’s Ship Impetuous, in the style of C.S. Forester’s Horatio Hornblower novels; and Dragons of Hong Kong, in the spirit of Sax Rohmer’s Fu Manchu series of oriental mysteries.

To understand what Lafore’s concept of IF is and how it works, let’s begin with some promotional copy. After asking us to “step into a new dimension in literature,” Adventure International’s advertisement for the line continues:

Traditionally, literature has been a one-way medium. The information flow was from the novel to the reader, period. Interactive fiction changes this by permitting the reader to participate in the story itself.

The computer sets the scene with a fictional situation, which you read from the terminal. Then you become a character in the story: when it’s you’re turn to speak, you type in your response. The dialog of the other characters, and even the plot, will depend on what you say.

Wow. No previous computer “game” had dared to compare its story to that of a novel. Just the text above, divorced from the actual program it describes, demonstrates a real vision of the future of ludic narrative.

But as anyone who’s had experience with early computer-game ad copy knows, the reality often doesn’t match the rhetoric, with the latter often seeming aspirational rather than descriptive, corresponding more with the game the authors would like to have created than with the technical constraints of 8-bit processors and miniscule memories. Here’s a complete play-through of the first of the vignettes of Six Micro-Stories, “The Fatal Admission”:

[image:]

[image:]

[image:]

[image:]

[image:]

Admittedly, this is not Lafore’s finest hour, so let’s try to be gentle. Let’s leave aside the fact that an admiral could only have been in the Kriegsmarine, not the Gestapo, as well as Lafore’s obvious cluelessness about German. Let’s also leave aside the illogicality of the question on which the story turns. (If I’ve been actively impersonating Colonel Braun for so long, how could I not know what flight wing I am with?) And let’s leave aside the unfair, learning-by-death aspect of the whole experience. I just want to get down to how the program works right now.

As will probably surprise no one, the program is not parsing the player’s responses in any meaningful sense, but rather doing simple pattern matching on the player’s input, somewhat in the style of Eliza but without even that program’s sophistication. Given this, it’s inevitably very easy to trip the program up, intentionally or unintentionally. Consider the following response to the admiral’s question about Captain Eiderdown:

[image:]

What’s happened here is that the program has found the “not” in the player’s input and thrown out everything else, assuming the sentence to be a negative answer. This is not an isolated incident. Let’s try yet again to answer the trick question about the 57th Air Wing correctly and stay alive.

[image:]

Cool! Now we can accept our new assignment and learn even more juicy Nazi secrets.

[image:]

Woops. The program has failed to understand us entirely that time, which is at least better than a misunderstanding I suppose.

[image:]

Obviously simple answers are the best answers.

Various vignettes in Six Micro-Stories do various things with the entered text. Perhaps the most complex and computationally interesting entry in the collection is called “Encounter in the Park,” in which you must try to get a date from a young lady you meet by chance in the park. It plays like a goal-directed version of Eliza, albeit a very primitive one. In case the connection is not obvious, the love interest’s name is even, you guessed it, Eliza.

[image:]

The ultimate solution is ice cream; the mere mention of it causes Eliza to shed her sophisticated Updike-reading trappings and collapse into schoolgirl submissiveness. (The implications of this behavior in a paternalistic society like ours we will leave for the gender-studies experts.)

[image:]

Another vignette is little more than a multiple-choice quiz on the age-old question of the definition of art.

[image:]

And then there’s this nihilistic little number, in which nothing you type makes any difference whatsoever:

[image:]

Lafore was either in a pissy mood when he wrote that one or homing in on some existential truth the rest of us can’t bear to face — take your choice.

But these are exceptions. When we get past the parser to look at the player’s actual options (thank God for BASIC!), we find that the remainder of the vignettes, as well as all of the vastly more compelling full-length stories, are really multiple-choice narratives, in which the player can choose from (usually) two or (occasionally) as many as three, four, or five options in a series of hard-coded decision points. In other words, these are really choose-your-own-adventure stories / hypertext narratives / choice-based narratives (choose your term). They are much closer to the Choose Your Own Adventure books that were just beginning to flood bookstores in 1980 than they are to the text adventures of Scott Adams or, indeed, to the interactive fiction that Infocom would soon be publishing. It’s just that their real nature is obscured by the frustrating Eliza-esque “parser” which adds an extra layer of guesswork to each decision. Sure, there are arguments to be made for the parser here. Theoretically at least, allowing the player to make decisions “in her own words” could help to draw her into the story and the role she plays there. In practice, though, the opportunities for miscommunication are so great that they outweigh any possible positives.

In a demonstration of just how ridiculously far I’m willing to go to prove a point, I reimplemented what I consider to be the most satisfying of the longer stories, His Majesty’s Ship Impetuous, using the ChoiceScript system. (Well, okay, I did want to try out ChoiceScript as well, and this project made a good excuse…) If you care to play it, you’ll find that it’s a much more complete and satisfying efforts than those I’ve highlighted above, if not totally free of some of their design problems, in that getting an optimal outcome requires a bit of learning from death. Still, Lafore’s writing is sharp and well suited to the genre, and story as a whole is carefully thought through; this represents easily the most competently crafted fiction yet to grace a computer screen in 1980. Its good qualities come through much better shorn of the Eliza trappings. Indeed, it’s much more interesting to consider in this light, because choice-based narratives had not yet made their way to the computer before Lafore set to work.

I don’t want to try to formulate a detailed theory of choice-based narrative design here, particularly because Sam Kabo Ashwell is gradually doing exactly that via his amazing series of analyses of various works in the form — a series to which nothing I say here can bear comparison. I do, however, want to note that parser-based and choice-based narratives are very different from one another, yet are constantly confused; Lafore was perhaps the first to make this mistake, but he was hardly the last. For example, the Usenet newsgroup that was the center of IF discussion for many years, rec.arts.int-fiction, was originally founded by hypertext aficionados, only to be invaded and co-opted by the text-adventure people. And even today, the very interesting-looking Varytale project bills itself as “interactive fiction.” Choice of Games doesn’t go that far, but does actively encourage authors to submit their ChoiceScript games to IF competitions, something that doesn’t really bother me but that perhaps does bring two sets of expectations into a collision that doesn’t always serve either so well.

The primary formal difference here is in the granularity of the choices offered. Parser-based IF deals in micro-actions: picking up and dropping objects, moving from one concretely bounded space to another, fiddling with that lock in exactly the right way to get that door open. Choice-based narratives at their best deal in large, defining decisions: going to war with Eastasia or with Eurasia, trying to find your way back to the Cave of Time or giving up. Even when the choices presented are seemingly of an IF-like granularity, such as whether to take the left or the right branch in that dungeon you’re exploring, they should turn out to be of real consequence. A single choice in a choice-based narrative can encompass thousands of turns in a parser-based work of IF — or easily an entire game. When authors combine a choice-based structure with an IF-like level of granularity, the results are almost always unfortunate; see for example 2009 IF Competition entry Trap Cave, which attempted to shoehorn an Adventure-style cave crawl into a choice-based format, or Ashwell’s analysis of a Fighting Fantasy gamebook. A choice-based narrative needs to give its player real narrative agency — at the big, defining level of choosing where the plot goes — to be successful. Parser-based IF does not; it can let the player happily busy herself with the details while guiding her firmly along an essentially railroaded plot arc.

Given that they can tell such large swathes of story at a hop, we might be tempted to conclude that choice-based games allow deeper, richer stories. In a way that’s true, especially in the context of 1980; it would have been impossible to pack even 10% of the story of His Majesty’s Ship Impetuous into a Scott Adams-style game. It’s also true that choice-based narratives are generally not so much about challenging their players with puzzles or tactical dilemmas as they are about the “pure” experience of story. A contemporary reviewer of His Majesty’s Ship Impetuous writing in SoftSide magazine, Dave Albert, very perceptively picked up on these qualities and in the process summarized the joys of a choice-based narrative as well as some of the frustrations of Lafore’s early implementation of same:

Lafore has tried to write an open-ended story with several possible endings, and he has tried to structure it so that the reader/player is unaware of the import of the decisions made. Where in previous stories the player is allowed to ask any question that comes to mind (with often incongruous and confusing results), in Impetuous yes or no decisions are presented. There is no way to work around this structure, and it is greatly to the benefit of the program that such is the case. There is no puzzle to solve, only a story to develop. The end goal is to survive and the decisions that you make will dictate whether you do or not. However, you cannot decipher what is the proper course of action that will guarantee your success. There are enough critical points (decisions) in the program to make you uncertain of your actions after several games. This greatly enhances the value of the program.

I wouldn’t frame all the specific design choices in Impetuous quite so positively as Albert, but I think the larger points stand. Choice-based works encourage the player to view them from on-high, like a puppet master manipulating not just her character but the strings of the plot itself; note that Impetuous is written in the third-person past tense. The player manipulates the story, but she does not always feel herself to be in the story. Some more recent choice-based works have even divorced the player entirely from any set in-world avatar. Parser-based IF, however, excels at putting you right there, immersed in the virtual reality you are exploring. Both approaches are valid for telling different kinds of stories, creating different kinds of experiences, and both can go horribly awry. Too many choice-based works leave their player feeling so removed from the action that she ceases to care at all (this, I must admit, is my typical reaction when playing even the modern ChoiceScript games, and the main reason my heart belongs firmly to the parser-based camp); too many parser-based works, especially early ones, become so fiddly that they only frustrate.

Minus the parser frustrations, Impetuous is a fairly successful piece of work, written at an appropriate level of abstraction for the choice-based form. If many of its choices are ultimately false ones, having no real effect on the plot, it disguises this well enough that the player does not really realize it, at least on the first play-through, while enough choices do matter to keep the player interested. Best of all, and most surprisingly when we consider the structure of, say, the early Choose Your Own Adventure books, there are no arbitrary, context-less choices (will you go right or left in this dungeon?) and no choices that lead out of the blue to death. Some of its ethical positions are debatable, such as the way it favors plunging headlong into battle versus a more considered approach, but perhaps that’s par for the course given its genre.

One of the amusing and/or disconcerting aspects of writing this blog has been that I sometimes find myself honoring pioneers who have no idea they are pioneers. Lafore traded in his entertainment-software business after writing Dragons of Hong Kong for a long, successful, and still ongoing career as an author of technical books. I’m going to guess that he has no idea that the term he invented all those years ago remains vital while the works to which he applied it have been largely forgotten.

By way of remedying that at least a little bit, do give my implementation of His Majesty’s Ship Impetuous a shot. I think it works pretty well in this format, and is more entertaining and well-written than it has a right to be. (Credit goes to Lafore for that, of course.) And if you’d like to play the originals of either Six Micro-Stories or His Majesty’s Ship Impetuous, you can do that do too.

1. Download my Robert Lafore starter pack.

2. Start the sdltrs emulator.

3. Press F7, then load “newdos.dsk” in floppy drive 0 and either “microstories.dsk” or “impetuous.dsk” into floppy drive 1.

4. Reboot the emulator by pressing F10.

5. At the DOS prompt, type BASIC.

6. Type LOAD “STORY:1″ for Six Micro-Stories; LOAD “STORY1:1” for His Majesty’s Ship Impetuous.

7. Type RUN.

Next time I want to have a look at the evolving state of the computer industry in 1980 — and begin to execute a (hopefully) deft platform switch.

							
		
	
		
			
				Binning the Trash-80

				September 6, 2011
			

[image:]

The microcomputer landscape of 1980 looked very different than it had when the trinity of 1977 first hit the scene. The hackers and early adopters who first made the TRS-80 a success were a step closer to sane than the solder-iron-wielding crazies who had constructed Altairs in their garages out of a set of diagrams and a loose pile of chips, but only a step. Owning and operating a computer was still expensive and difficult, and the question on the lips of wives and girlfriends across the country — “But what is it really good for?” — did not have any particularly strong answers. By 1980, though, that was changing, sufficiently so in fact that segments of the population were beginning to purchase computers not out of fascination with the technology itself, but rather because of what the technology would allow them to accomplish. That was due to the work of all those early adapters, who hacked like mad to create useful things that would justify their time in the terms that matter most in a market economy, dollars and cents, and thus in turn buy them yet more time to hack.

The most celebrated of these early killer apps today, perhaps due to its having been featured on The Triumph of the Nerds documentary, is VisiCalc, the spreadsheet program whose basic approach is still echoed in the Microsoft Excel we all know and love (?) today. Introduced in late 1979, it gave accountants, small-business owners, and even home users compelling reasons to own a microcomputer — whether to calculate taxes or accounts receivable and payable, or just to keep the checkbook balanced. But there are other examples. The first crude word processing application was called The Electric Pencil; it predated even the trinity of 1977, appearing for the early kit computers in December of 1976. It took WordStar, however, to refine the concept into a program flexible and powerful enough to begin to replace the expensive specialized word-processing machines found on secretary’s desks around the country upon its release in September of 1978. dBase, the first programmable relational database for microcomputers, made its first appearance in 1979. And while they were seldom openly mentioned as a reason to buy these early computers, games were always present as a sort of guilty pleasure and secret motivator. They were still crude and limited in 1980, but growing by leaps and bounds in both ambition and sales as the first specialized entertainment publishers such as Adventure International got off the ground, and as new microcomputers much more suited for play began to appear in the wake of the Atari VCS game-console sensation which began sweeping the country in earnest during the holiday season of 1979.

Ah, yes, the new machines. As new applications showed how useful and/or entertaining computers could be in both businesses and homes and as their sales figures responded, plenty of new players came rushing into the market. Some, such as the Exidy Sorcerer and Texas Instruments 99/4, found little traction, becoming mere historical footnotes and modern collector’s items. Others, though, heralded major new technological and cultural developments. We’ll get to these at some point, but for this post let’s see if we can bring some sort of order — i.e., some categories — to the crazy quilt of microcomputers available by 1980. Oddities like the TI 99/4 (the world’s first 16-bit microcomputer based on a CPU of TI’s own design) aside, most computers were based on one of two 8-bit CPU architectures.

First there was the Intel 8080, the chip at the heart of the original Altair kit computer and its contemporaries, and the Z80, a mostly compatible CPU from Zilog that nevertheless offered a more flexible, efficient design; this, you may recall, was the chip Tandy chose for the TRS-80. Apart from the TRS-80, which for better and (as we shall shortly see) for worse remained largely its own thing, these machines generally ran the first widespread platform-agnostic operating system for microcomputers, CP/M (Control Program for Microcomputers). Developed by Gary Kildall at the very dawn of the microcomputer era and published by his company Digital Research, CP/M was the MS-DOS — or, if you like, the Microsoft Windows — of this early era, a de facto if not official standard that allowed machines from a huge variety of makers to share software and information. (There is also a more tangible link between CP/M and MS-DOS: depending on whom you talk to, the original MS-DOS from 1981 was either “inspired by” CP/M or an outright unauthorized reverse engineering of the earlier O/S. But that subject will doubtlessly come up again in later posts…) For a computer to run CP/M, it required two things: an Intel 8080 or Zilog Z80 CPU, and a certain standard bus design for communicating with its disk drives and other peripherals, known as the S-100 — a design which had its origins as far back as the original Altair.(UPDATE: As Jonno points out in the comments, an S-100 bus was not a strict requirement for CP/M.)

CP/M and the Intel- and Zilog-based architectures on which it ran became the standard environment for “serious” microcomputing of the late 1970s and early 1980s, the kind done in corporate offices and small businesses. WordStar and dBase were both born there, and VisiCalc, although conceived on the Apple II, quickly found its way there. CP/M had, however, no graphics capabilities at all and only limited support for real-time operations, making it problematic as a platform for many types of games and even educational software. It also relied upon the existence of at least one disk drive on its host platform at a time when such devices tended to be very pricy. These factors made CP/M and the 8080 a poor fit for the less expensive, usually cassette-based computers generally chosen by home users. That market was dominated by another hardware architecture, that of the MOS Technologies 6502 CPU.

When the 6502 first appeared in 1975, MOS was a tiny independent chip-maker, but that changed when Commodore purchased the entire company in late 1976. This move, one of the smartest that Commodore head Jack Tramiel ever made, left the Commodore in the enviable position of making money not only when it sold its own machines such as the PET, but also every time a rival purchased 6502s for its own products. Said rivals initially included only Apple with its Apple II line and a number of kit-based computers from various small manufacturers, but that would change soon enough.

A CP/M equivalent for 6502-based machines was never developed, meaning that they remained largely incompatible with one another. BASIC did serve as a partial lingua franca, as virtually all of these machines housed a version of Microsoft’s industry-standard BASIC in their ROMs, but there was enough variation from implementation to implementation that most programs needed at least some customizing. And of course when one progressed beyond BASIC to assembly language to take full advantage of everything a 6502-based machine had to offer — especially graphics and sound, which capabilities varied wildly from model to model — one was faced with essentially coding everything from scratch for each machine one wished to support. Crazy times — although with the ever-increasing proliferation of incompatible mobile computing devices in our own times it’s starting to look like 1980 all over again.

What the 6502 world lost in compatibility it gained in flexibility. Freed from the need to work through a comparatively complex and inefficient OS like CP/M, programmers could code right to the metal on these machines, manipulating every element of the hardware directly for maximum efficiency. Further, the 6502-based machines, being generally aimed at the home and education markets, tended to feature the graphics and sound capabilities that were missing from the bland, textual world of CP/M; the Apple II, for instance, was the only member of the trinity of 1977 with support for proper bitmap graphics, a subject I’ll begin to discuss in more detail in my next post.

But now you might be wondering where all of this left the TRS-80, which fit neatly into neither of the two categories just described. Although the TRS-80 was built around the Z80 CPU, Radio Shack had chosen in the name of penny pinching not to implement the S-100 bus design. (UPDATE: As happens from time to time around these parts, this is not correct. Actually, the problem involved the memory map of the original TRS-80, in which ROM proceeded RAM; a CP/M machine required the reverse. Thanks to Jonno for pointing this out in the comments.) This made CP/M a nonstarter. Despite being a huge success in its early years and still having the largest installed base of any microcomputer, the TRS-80’s future was, at least in retrospect, already clouded in 1980. Its incompatibility with CP/M left it cut off from the quickly growing base of serious business software found on that OS. In spite of the TRS-80’s relatively cheap price, Radio Shack’s reputation as purveyors of cheap junk for the masses did little to attract business users, and in a classic chicken-or-the-egg scenario this lack of business users discouraged developers from porting their products from CP/M to the little oddball Tandy machine. And in the other half of the microcomputer market, the 6502-dominated world of games machines and hobbyist computing, the TRS-80 was also looking like an increasingly poor fit with its almost complete lack of graphics and absolutely complete lack of sound. The arrival of the Atari 400 and 800, colorful 6502-based machines with superb graphics and sound for the time, and, a bit later in early 1981, the Commodore VIC-20, a much less capable machine in comparison but one nevertheless sporting color graphics and sound for an unprecedentedly low price, were particularly ominous signs.

While the wisdom of many of its moves is debatable, Tandy at least did not stand entirely still in the face of these developments. In fact, it released quite a blizzard of new machines, none of which came close to recapturing the market share the TRS-80 enjoyed in the late 1970s.

[image:]

Tandy released a new machine called the TRS-80 Model 2 (the original TRS-80 being now retroactively renamed to the Model 1) in late 1979. The Model 2 was designed to capture the business computing market that was passing the Model 1 by; it sold with integrated disk drives and did properly implement the S-100 bus included bank-switchable ROM, thus allowing it to run CP/M. But it was also a much more expensive machine than the Model 1 and, most dismaying of all, completely incompatible with it. Thanks to Radio Shack’s usual lack of marketing acumen and genius for clunky, tacky-looking design as well as its high price, it was not a big success in the business market, while its incompatibility made it of little interest to existing Model 1 owners.

[image:]

The Model 3 which appeared to replace the Model 1 in the summer of 1980, meanwhile, was rather forced on Radio Shack. The Model 1 had put out so much radio interference that, in an example of the boundless ingenuity that marked the early microcomputer era, people began writing programs to manipulate memory so as to make music using this interference along with a nearby transistor radio to pick it up. New FCC regulations for 1981 forced Radio Shack to build in proper RF shielding, and thus spoiled that particular kind of fun. In addition to fixing this issue, the Model 3 also sported a slightly faster version of the Z80 CPU and (hallelujah!) real lower-case letter support for both input and output amongst other modest improvements. Yet it did nothing to improve the Model 1’s meager display capabilities. And, in the one-step-forward two-steps-back dance that seemed to define Radio Shack, the Model 3 was optimistically said to be just “80%” compatible with the Model 1, while, once again, no S-100 bus meant no the design did not allow for CP/M. Radio Shack in their marketing genius now had three separate machines labeled the TRS-80, each now partially or entirely incompatible with its siblings. Just imagine trying to figure out what software actually worked on your version…

[image:]

And incredibly, there was yet another completely incompatible TRS-80 released in 1980, this one the most significant of all. Although officially called the TRS-80 Color Computer, it was a radical departure from anything seen before, being built around perhaps the most advanced 8-bit CPU ever produced, the new Motorola 6809E. Like so many Radio Shack systems, it offered intriguing potential bundled together with some dismaying weaknesses. On the plus side were the powerful 6809E itself and an advanced Microsoft BASIC that made it a favorite among hobbyist programmers; on the weak side were sound and graphics capabilities that, while a step up from the other TRS-80 models, were still not competitive with new and upcoming models from companies like Atari and Commodore. In spite of that the CoCos, as they soon became affectionately known, had a long run during which they consistently flew under the radar of the mainstream, attracting little in the way of games or applications from most publishers or even from Radio Shack itself, but survived on the back of a sort of cult industry all their own sustained by a fanatically loyal user base. The CoCo line did not finally go out of production until 1991.

There are many more interesting stories to tell about Radio Shack’s quirky little computers, but none would ever come close to dominating the industry the way that the TRS-80 Model 1 did for those first few years. In truth, even the Model 1 was popular because it was widely available at a time when distribution channels for other brands were barely extant and because its price was reasonable rather than because of any sterling technical qualities of the machine itself. The TRS-80 was really not so far removed from Radio Shack’s other products: it basically got the job done, but in about the most uncool and unsexy way imaginable. It primed the pump of the home computer industry and brought adventure games into the home for the first time, but already in 1980 its time was passing.

So, we’ll bit adieu to the old Trash-80 and move on next time to look at the machine that made the company that has come to define cool and sexy in technology. Yes, I’m talking about those two plucky kids in that California garage.

							
		
	
		
			
				Jobs and Woz

				September 9, 2011
			

[image:]

As I write this the news media and the blogosphere are just tailing off from an orgy of commentary and retrospectives triggered by an obviously ill Steve Jobs stepping down at last from his post as Apple’s CEO. The event marks the end of an era. With Bill Gates having retired from day-to-day involvement with Microsoft a few years ago, the two great survivors from those primordial computing days of the late 1970s and early 1980s no longer run the iconic companies that they began to build all those years ago.

For many, Bill and Steve embodied two fundamentally opposing approaches to technology. On one side was Gates, the awkwardly buttoned-down overachiever who never even as a multi-billionaire seemed quite comfortable in his own skin, wielding spreadsheets and databases while obsessing over Microsoft’s latest financial reports. On the other was Jobs, the epitome of California cool who never met a person he couldn’t charm, wielding art packages and music production software while talking about how technology could allow us to live better, more elegant lives. These attitudes were mirrored in the products of their respective companies. In In the Beginning Was the Command Line, Neil Stephenson compared the Macintosh with a sleek European sedan, while Windows was a station wagon which “had all the aesthetic appeal of a Soviet worker housing block; it leaked oil and blew gaskets, and [of course] it was an enormous success.” These contrasts — or should we say caricatures? — run deep. They were certainly not lost on Apple itself when it made its classic series of “I’m a Mac / I’m a PC” commercials to herald its big post-millennial Jobs-helmed comeback.

Buy a Mac (U.S.A. 15 Ads in 1 Pack)

Even in the late 1970s, when he was a very young man, Jobs had an intuitive feeling for the way that technology ought to work and an aesthetic eye that was lacking in just about every one of the nerds and hackers that made up the rest of the early microcomputer industry. Almost uniquely among his contemporaries, Jobs had a vision of where all this stuff could go, a vision of a technological future that would appeal not just to PC guy in the commercials above but also to Mac guy. The industry desperately needed a guy like Jobs — good-looking, glib, articulate, with an innate sense of aesthetics and design — to serve as an ambassador between the hackers and ordinary people. Job was the kind of guy who might visit a girlfriend’s home for dinner and walk away with a check to fund his startup business from the father and a freshly baked cake from the mother. He made all these hackers with their binary code and their soldering irons seem almost normal, and almost (if only by transference) kind of cool.

There’s a trope that comes up again and again amongst the old-timers who remember those days and the histories that are written of them: that it was a fundamentally innocent time, when hackers hacked just for the joy of it and accidentally created the modern world. In Triumph of the Nerds, Jobs’s partner in founding Apple, Steve Wozniak, said:

“It was just a little hobby company, like a lot of people do, not thinking anything of it. It wasn’t like we both thought it was going to go a long ways. We thought we would both do it for fun, but back then there was a short window in time where one person who could sit down and do some neat, good designs could turn them into a huge thing like the Apple II.”

I believe Wozniak, a hacker’s hacker if ever there was one. To imagine that an amity of hacking bliss united the those guiding the companies that made up the early industry, though, is deeply mistaken. As shown by the number of companies and computer models that had already come and gone by even 1982, the PC industry was a cutthroat, hyper-competitive place.

In the same video, Jobs has this to say about those days:

“I was worth over a million dollars when I was 23, and over ten million dollars when I was 24, and over a hundred million dollars when I was 25, and it wasn’t that important, because I never did it for the money.”

In contrast to Wozniak’s comments, there’s a note of disingenuousness here. It seems suspicious that, for someone for whom finances are so unimportant, Jobs has such a specific recollection of his net worth at exact points in time; something tells me Wozniak would be challenged to come up with similar figures. I mentioned once before on this blog how Jobs cheated best friend Wozniak out of a $5000 for designing Breakout on his behalf for Atari. Jobs was of course a very young man at the time, and we’d all like to have things back from our youth, but this moment always struck me as one of those significant markers of character that says something about who a person fundamentally is. Wozniak might dismiss the incident in his autobiography by saying, “We were just kids, you know,” but I can’t imagine him pulling that stunt on Jobs. In another of those markers of character, Wozniak was so honest that, upon designing the computer that would come to be known as the Apple I and founding a company with Jobs to market it, he suddenly recalled the employment contract he had signed with Hewlett Packard which said that all of his engineering work belonged to HP during the term of his employment, whether created in the office or at home, and tried to give his computer design to HP. Much to Jobs’s relief, HP just looked at it bemusedly and told Wozniak to knock himself out trying to sell the thing on his own.

In the case of Jobs, when we drill down past the veneer of California cool and trendy Buddhism we find a man as obsessively competitive as Gates; both men were the most demanding of bosses in their younger days, who belittled subordinates and deliberately fomented discord in the name of keeping everyone at their competitive best. Gates, however, lacked the charm and media savvy that kept Jobs the perpetual golden boy of technology. Even when he was very young, people spoke about the “reality distortion field” around Jobs that seemed to always convince others to see things his way and do his bidding.

And if Jobs isn’t quite the enlightened New Man whose image he has so carefully crafted, there’s a similarly subtle cognitive dissonance about his company. Apple’s contemporary products are undeniably beautiful in both their engineering and their appearance, and they’re even empowering in their way, but this quality only goes so far. To turn back to Stephenson again, these sleek machines have “their innards hermetically sealed, so that how they work is something of a mystery.” Empowering they may be, but only on Apple’s terms. In another sense, they foster dependence — dependence on Apple — rather than independence. And then, of course, all of that beauty and elegance comes at a premium price, such that they become status symbols. The idea of a computing device, whatever its price, becoming a status symbol anywhere but inside the community of nerds would of course have been inconceivable in 1980 — so that’s progress of a sort, and largely down to Jobs’s influence. Still, it’s tempting sometimes to compare the sealed unknowability of Apple’s products with the commodity PCs that once allowed the “evil” Bill Gates to very nearly take over the computing world entirely. A Windows-based PC may have been a domestic station wagon or (in another popular analogy) a pickup truck, but like those vehicles it was affordable to just about everyone, and it was easy to pop the hood open and tinker. Apple’s creations required a trip to the metaphorical exotic car dealership just to have their oil changed. A Macintosh might unleash your inner artist and impress the coffee-house circuit, but a PC could be purchased dirt cheap — or assembled from cast-off parts — and set up in the savannah to control those pumps that keep that village supplied with drinking water. There’s something to be said for cheap, ubiquitous, and deeply uncool commodity hardware; something to be said for the idea of (as another microcomputer pioneer put it) “computers for the masses, not the classes.”

A mention of Linux might seem appropriate at this juncture, as might a more fine-grained distinction between hardware and software, but these metaphors are already threatening to buckle under the strain. Let’s instead try to guide this discussion back to Jobs and Woz, an odd couple if ever there was one.

Wozniak was a classic old-school hacker. Even during high school in the late 1960s, he fantasized about computers the way that normal teenagers obsessed over girls and cars. His idea of fun was to laboriously write out programs in his notebooks, programs which he had no computer to run, and to imagine them in action. While other boys hoarded girlie magazines, Woz (as everyone called him) collected manuals for each new computer to hit the market — sometimes so he could redesign them better, more efficiently, in his imagination.

In 1970, during a working sabbatical of sorts from university, the 20-year-old Woz met the 15-year-old Steve Jobs. Despite the age difference, they became fast friends, bonding over a shared love of technology, music, and practical jokes. Soon they discovered another mutual obsession: phone phreaking, hacking the phone system to let one call long distance for free. The pair’s first joint business venture — instigated, as these sort of things always were, by Jobs — was selling homemade “blue boxes” that could generate the tones needed to mimic a long-distance carrier.

Jobs was… not a classic old-school hacker. He was, outwardly at least, a classic hippie with a passion for Eastern philosophy and Bob Dylan, a “people person” with little patience for programming or engineering. Nevertheless, the reality distortion field allowed him to talk his way into a technician’s job at rising arcade-game manufacturer Atari. He even got Atari to give him a summer off and an airline ticket to India to do “spiritual research.” In spite of it all, though, the apparently clueless Jobs just kept delivering the goods. The reason, of course, was Woz, who by then was working full-time for Hewlett Packard during the day, then doing Jobs’s job for him by night. The dynamic duo’s finest hour at Atari was the arcade game Breakout. In what at least from the outside has all the markings of a classic codependent relationship, poor Woz was told that they had just four days to get the design done; actually, Jobs just wanted to get finished so he could jet off to attend the harvest at an apple orchard commune in Oregon. (You just can’t make some of this stuff up…) Woz met the deadline by going without sleep for four days straight, and did it using such an impossibly low number of chips that it ended up being un-manufactureable. Atari engineer Al Alcorn:

“Ironically, the design was so minimized that normal mere mortals couldn’t figure it out. To go to production, we had to have technicians testing the things so they could make sense of it. If any one part failed, the whole thing would come to its knees. And since Jobs didn’t really understand it and didn’t want us to know that he hadn’t done it, we ended up having to redesign it before it could be shipped.”

But Jobs made it to the apple festival, and also got that $5000 bonus he neglected to tell Woz about to spend there. Even in 1984 Woz still believed that he and Jobs had earned only $700 for a design that became the big arcade hit of 1976.

We can really only speculate about what caused Woz to put up with treatment like this — but speculation is fun, so let’s have at it. Woz was one of those good-hearted sorts who want to like and be liked, but who, due to some failure of empathy or just from sheer trying too hard, are persistently just enough out of sync in social situations to make everything a bit awkward. Woz always seemed to laugh a little bit too loud or too long, couldn’t quite sense when the time was right to stop reciting from his store of Polish jokes, didn’t recognize when his endless pranks were about to cross the line from harmless fun into cruelty. For a person like this the opportunity to hang out with a gifted social animal like Jobs must have been hard to resist, no matter how unequal the relationship might seem.

And it wasn’t entirely one way — not at all, actually. When Woz was hacking on the project that would become the Apple I, he lusted after a new type of dynamic RAM chips, but couldn’t afford them. Jobs just called up the manufacturer and employed the reality distortion field to talk them into sending him some “samples.” Jobs was Woz’s enabler, in the most positive sense; he had a genius for getting things done. In fact, in the big picture it is Woz that is in Jobs’s debt. One senses that Jobs would have made his mark on the emerging microcomputer industry even if he had never met Woz — such was his drive. To be blunt, Jobs would have found another Woz. Without Jobs, though, Woz would have toiled away — happily, mind you — in some obscure engineering lab or other his entire life, quietly weaving his miniaturized magic out of silicon, and retired with perhaps a handful of obscure patents to mark his name for posterity.

Unsurprisingly given their backgrounds and interests, Woz and Jobs were members of the famous Homebrew Computer Club, Woz from the very first meeting on March 5, 1975. There, the social hierarchy was inverted, and it was Woz with his intimate knowledge of computers that was the star, Jobs that was the vaguely uncomfortable outsider.

Woz designed the machine that became the Apple I just for fun. It was somewhat unique within Homebrew in that it used the new MOS 6502 CPU rather than the Intel 8080 of the original Altair, for the very good reason that Woz didn’t have a whole lot of money to throw around and the 6502 cost $25 versus $175 for the 8080. The process was almost committee-driven; Woz, who had the rare and remarkable gift of being without ego when it came to matters of design, would bring his work-in-progress to each biweekly Homebrew meeting, explaining what he’d done, describing where he was having problems, and soliciting advice and criticism. What he ended up with was pretty impressive. The machine could output to a television screen, as opposed to the flashing lights of the Altair; it used a keyboard, as opposed to toggle switches; and it could run a simple BASIC interpreter programmed by Woz himself. Woz said he “designed the Apple I because I wanted to give it away free for other people. I gave out schematics for building my computer at the next meeting I attended.”

Steve Jobs put a stop to those dangerous tendencies. He stepped in at this point to convince Woz to do what he never would have done on his own: to turn his hacking project into a real product provided by a real company. Woz sold his prize HP calculator and Jobs his Volkswagen van (didn’t someone once say that stereotypes are so much fun because they’re so often true?) to form Apple Computer on April 1, 1976. The Apple I was not a fully assembled computer like the trinity of 1977, but it was an intermediate step between the Altair and them; instead of a box of loose chips, you got a finished, fully soldered motherboard to build onto with your own case, power supply, keyboard, and monitor. The owner of an important early computer store, The Byte Shop, immediately wanted to buy 50 of them. Problem was, Jobs and Woz didn’t have the cash to buy the parts to make them. No problem; Jobs employed the reality distortion field to convince a wholesale electronics firm to give these two hippies tens of thousands of dollars in hardware in exchange for a promise to pay them in one month. Apple ended up selling 175 Apple Is over the next year, each assembled by hand in Jobs’s parents’ garage by Jobs and Woz and a friend or family member or two.

While that was going on, Woz was designing his masterpiece: the Apple II.

							
		
	
		
			
				The Apple II

				September 12, 2011
			

Steve Jobs’s unique sense of design and aesthetics has dominated every technology project he’s led following the Apple II — for better (the modern Macintosh, the iPhone, the iPod, the iPad) or worse (the Apple III) or somewhere in between (the original 1984 Macintosh, the NeXT workstations). The Apple II, though, was different. While Jobs’s stamp was all over it, so too was the stamp of another, very different personality: Steve Wozniak. The Apple II was a sort of dream machine, a product genuinely capable of being very different things to different people, for it unified Woz’s hackerish dedication to efficiency, openness, and possibility with Jobs’s gift for crafting elegant experiences for ordinary end users. The two visions it housed would soon begin to pull violently against one another, at Apple as in the computer industry as a whole, but for this moment in time, in this machine only, they found a perfect balance.

To call Jobs a mediocre engineer is probably giving him too much credit; the internals of the Apple II were all Woz. Steven Levy describes his motivation to build it:

It was the fertile atmosphere of Homebrew that guided Steve Wozniak through the incubation of the Apple II. The exchange of information, the access to esoteric technical hints, the swirling creative energy, and the chance to blow everybody’s mind with a well-hacked design or program… these were the incentives which only increased the intense desire Steve Wozniak already had: to build the kind of computer he wanted to play with. Computing was the boundary of his desires; he was not haunted by visions of riches and fame, nor was he obsessed by dreams of a world of end users exposed to computers.

When you open an Apple II, you see a lot of slots and a lot of empty space.

[image:]

All those slots were key to Woz’s vision of the machine as a hacker’s ultimate plaything; each was an invitation to extend it in some interesting way. Predictably, Jobs was nonplussed by Woz’s insistence on devoting all that space to theoretical future possibilities, as this did not jive at all with his vision of the Apple II as a seamless piece of consumer electronics to be simply plugged in and used. Surely one or two slots is more than sufficient, he bargained. Normally Jobs, by far the more forceful personality of the two, inevitably won disputes like this — but this time Woz uncharacteristically held his ground and got his slots.

Lucky that he did, too. Within months hackers, third-party companies, and Apple itself began finding ways to fill all of those slots — with sound boards, 80-column video boards, hard-disk and printer interfaces, modems, co-processor and accelerator cards, mouse interfaces, higher resolution graphics boards, video and audio digitizers, ad infinitum. The slots, combined with Woz’s dogged insistence that every technical nuance of his design be meticulously documented for the benefit of hackers everywhere, transformed the Apple II from a single, static machine into a dynamic engine of possibility. They are the one feature that, more than anything else, distinguished the Apple II from its contemporaries the PET and TRS-80, and allowed it to outlive those machines by a decade. Within months of the Apple II’s release, even Jobs would have reason to thank Woz for their existence.

All of the trinity of 1977 initially relied on cassette tapes for storage. Both the PET and TRS-80 in fact came with cassette drives as standard equipment, while the Apple II included only a cassette interface, to which the user was expected to connect her own tape player. A few months’ experience with this storage method, the very definition of balky, slow, and deeply unreliable, convinced everyone that something better was needed if these new machines were to progress beyond being techie toys and become useful for any sort of serious work. The obvious solution was the 5 1/4 inch floppy-disk technology recently devised by a small company called Shugart Associates. Woz soon set to work, coming up with a final design that engineers who understand such things still regard with reverence for its simplicity, reliability, and efficiency. The product, known as the Disk II, arrived to market in mid-1978 for about $600, vastly increasing the usability and utility of the Apple II. Thanks to the expandability Woz had designed into the Apple II from the start, the machine was able to incorporate the new technology effortlessly. Even at $600, a very competitive price for a floppy-disk system at the time, Woz’s minimalist design aesthetic combined with the Apple II’s amenability to expansion meant that Apple made huge margins on the product; in West of Eden, Frank Rose claims that the Disk II system was ultimately as important to Apple’s early success as the Apple II itself. The PET and TRS-80 eventually got floppy-disk drives of their own, but only in a much uglier fashion; a TRS-80 owner who wished to upgrade to floppy disk, for instance, had to first buy Radio Shack’s bulky, ugly, and expensive “expansion interface,” an additional big box containing the slots that were built into the Apple II.

Another killer app enabled by the Apple II’s open architecture had a surprising source: Microsoft. In 1980, that company introduced its first hardware product, a Zilog Z80 CPU on a card which it dubbed the SoftCard. An Apple II so equipped had access to not only the growing library of Apple II software but also to CP/M and its hundreds of business-oriented applications. It gave Apple II owners the best of both worlds for just an additional $350. Small wonder that the card sold by the tens of thousands for the next several years, until the gradual drying up of CP/M software — a development, ironically, for which Microsoft was responsible with its new MS-DOS standard — made it irrelevant.

While most 6502-based computers were considered home and game machines of limited “serious” utility, products like the SoftCard and the various video cards that let it display 80 columns of text on the screen — an absolute requirement for useful word processing — lent the Apple II the reputation of a machine as useful for work as it was for play. This reputation, and the sales it undoubtedly engendered, were once again ultimately down to all those crazy slots. In this sense the Apple II much more closely resembled the commodity PC design first put together by IBM in 1981 than it did any subsequent design from Apple itself.

Another significant advantage that the Apple II had over its early competitors was its ability to display bitmap graphics. The TRS-80 and the PET, you may recall, were essentially limited to displaying text only. While it was possible to draw simple pictures using the suite of simple shape glyphs these machines provided in addition to traditional letters and punctuation (see my post on Temple of Apshai on the TRS-80), this technique was an inevitably limited one. The Apple II, however, provided a genuine grid of 280X192 individually addressable pixels. Making use of this capability was not easy on the programmer, and it came with a host of caveats and restrictions. Just 4 colors were available on the original Apple II, for instance, and oddities of the design meant that any individual pixel could not always be any individual desired color. These circumstances led to the odd phasing and color fringing that still makes an Apple II display immediately recognizable even today. Still, the Apple II was easily the graphical class of the microcomputer world in 1977. (I’ll talk a bit more about the Apple II’s graphical system and its restrictions when I look at some specific games in future posts.)

So, Woz was all over the Apple II, in these particulars as well as many others. But where was Jobs?

He was, first of all, performing the role he always had during his earlier projects with Woz, that of taskmaster and enabler. Left to his own devices, Woz could lose himself for weeks in the most minute and ultimately inconsequential aspects of a design, or could drift entirely off task when, say, some new idea for an electronically enabled practical joke struck him. Jobs therefore took it upon himself to constantly monitor Woz and the pair of junior engineers who worked with him, keeping them focused and on schedule. He also solved practical problems for them in that inimitable Steve Jobs way. When it became apparent that it was going to be very difficult to design the RF modulator needed for hooking the computer up to a television (dedicated monitors at the time were a rare and pricy luxury) without falling afoul of federal RF interference standards, he had Woz remove this part from the computer entirely, passing the specifications instead on to a company called M&R Electronics. When sold separately and by another company, the RF modulator did not need to meet the same stringent standards. Apple II owners would simply buy their RF modulators separately for a modest cost, and everyone (most of all M&R, who were soon selling the little gadgets by the thousands) could be happy.

Such practical problem-solving aside, Jobs’s unique vision was also all over the finished product. It was Jobs who insisted that Woz’s design be housed within a sleek, injection-molded plastic case that looked slightly futuristic, but not so much as to clash with the decor of a typical home. It was Jobs who gave the machine its professional appearance, with its screws all hidden away underneath and with the colorful Apple logo (a reference to the machine’s unique graphical capabilities) front and center.

[image:]

Jobs, showing a prejudice against fan noise that has continued with him to the present day, insisted that Woz and company find some other way to cool it, which feat they managed via a system of cleverly placed vents. And it was Jobs who gave the machine its unique note of friendly accessibility, via a sliding top giving easy access to the expansion slots and, a bit further down the line, unusually complete and professional documentation in the form of big, glossy, colorful manuals. Indeed, much of the Apple II ownership experience was not so far removed from the Apple ownership experience of today. Jobs worked to make Apple II owners feel themselves part of an exclusive club, a bit more rarified and refined than the run-of-the-mill PET and TRS-80 owners, by sending them freebies and updates (such as the aforementioned new manuals) from time to time. And just like the Apple of today, he was uninterested in competing too aggressively on price. If an Apple II cost a bit more — actually, a lot more, easily twice the price of a PET or TRS-80 — it was extra money well spent. Besides, what adds an aura of exclusivity to a product more effectively than a higher price? What we are left with, then, is a more expensive machine, but also an unquestionably better machine than its competitors, and — a couple of years down the road at least, once its software library started to come up to snuff — one uniquely suited to perform well in many different roles for many different people, from the hardcore hacker to the businessman to the teacher to the teenage videogamer.

When the Apple II made its debut at the first West Coast Computer Faire in April of 1977, Jobs’s promotional instincts were again in evidence. In contrast to the other displays, which were often marked with signs hand-drawn in black marker, Apple’s had a back-lit plexiglass number illuminating the company’s new logo; it still looks pretty slick even today.

[image:]

In light of the confusion that still exists over who deserves the credit for selling the first fully assembled PC, perhaps we should take a moment to look at the chronology of the trinity of 1977. Commodore made the first move, showing an extremely rough prototype of what would become the PET at the Winter Consumer Electronics Show in January of 1977. It then proceeded to show progressively less rough prototypes at the Hanover Messe in March (a significant moment in the history of European computing) and the West Coast Computer Faire. However, the design was not fully finalized until July, and the first units did not trickle into stores until September. Even then, PETs remained notoriously hard to come by until well into 1978, thanks to the internal chaos and inefficiency that seemed endemic to Commodore throughout the company’s history. (Ironically, Jobs and Woz had demonstrated the Apple II technology privately to Commodore as well as Atari in 1976, offering to sell it to them for “a few hundred thousand” and positions on staff. They were turned down; Commodore, immensely underestimating the difficulty of the task, decided it could just as easily create a comparable design of its own and begin producing it in just a few months.) The TRS-80, meanwhile, was not announced until August of 1977, but appeared in Radio Shack stores in numbers within weeks of the PET to become by several orders of magnitude the biggest early seller of the trinity. And the Apple II? Woz’s machine was in a much more finished state than the PET at the West Coast Computer Faire, and began shipping to retailers almost right on schedule in June of 1977. Thus, while Commodore gets the credit for being the first to announced a pre-built PC, Apple was the first to actually follow through and ship one as a finished product. Finally, Radio Shack can have the consolation prize of having the first PC to sell in large numbers — 100,000 in just the last few months of 1977 alone, about twice the quantity of all other kit or preassembled microcomputers sold over the course of that entire year.

Actually, that leads to an interesting point: if Apple’s status as the maker of the first PC is secure, it’s also true that the company’s rise was not so meteoric as popular histories of that period tend to suggest. As impressive as both the Apple II and Jobs’s refined presentation of it was, Apple struggled a bit to attract attention at the West Coast Computer Faire in the face of some 175 competing product showcases, many of them much larger if not more refined than Apple’s. Byte magazine, for instance, did not see fit to so much as mention Apple in its extensive writeup of the show. Even after the machine began to ship, early sales were not breathtaking. Apple sold just 650 Apple IIs in 1977, and struggled a bit for oxygen against Radio Shack with its huge distribution network of stores and immense production capacity. The next year was better (7600 sold), the next even better (35,000 sold, on the strength of increasingly robust software and hardware libraries). Still, the Apple II did not surpass the TRS-80 in total annual sales until 1983, on the way to its peak of 1,000,000 sold in 1984 (the year that is, ironically, immortalized as the Year of the Macintosh in the popular press).

Apple release an enhanced version of the II in 1979, the Apple II Plus. This model usually shipped with a full 48 K of RAM, a very impressive number for the time; the original Apple II had initially had only 4 K as standard equipment. Also notable was the replacement in ROM of the original Integer BASIC, written by Woz himself years ago when he first started attending Homebrew Computer Club meetings, with the so-called AppleSoft BASIC. AppleSoft corrected a pivotal flaw in the original Integer BASIC, its inability to deal with floating-point (i.e., decimal) numbers. This much more full-featured implementation was provided, like seemingly all microcomputer BASICs of the time, by Microsoft. (As evidenced by AppleSoft BASIC and products like the SoftCard, Microsoft often worked quite closely with Apple during this early period, in marked contrast to the strained relationship the two companies would develop in later years.) Woz also tweaked the display system on the II Plus to manage 6 colors in hi-res mode instead of just 4.

By 1980, then, the Apple II had in the form of the II Plus reached a sort of maturity, even though holes — most notably, a lack of support for lower-case letters without the purchase of additional hardware — remained. It was not the best-selling machine of 1980, and certainly far from the cheapest, but in some ways still the most desirable. Woz’s fast and reliable Disk II design coupled with the comparatively cavernous RAM of the II Plus and the machine’s bitmap graphics capabilities gave inspiration for a new breed of adventure and RPG games, larger and more ambitious than their predecessors. We’ll begin to look at those developments next time.

In the aftermath of even the Apple II’s first, relatively modest success, Jobs began working almost immediately to make sure Apple’s follow-up products reflected only his own vision of computing, gently easing Woz out of his central position. He began to treat Woz as something of a loose cannon to be carefully managed after Woz threatened Apple’s legendary 1980 IPO by selling or even giving away chunks of his private stock to various Apple employees who he just thought were doing a pretty good job and deserved a reward, gosh darn it. The Apple III, also introduced in 1980, was thus the product of a more traditional process of engineering by committee, with Woz given very little voice in the finished design. It was also Apple’s first failure, largely due to Jobs’s overweening arrogance and refusal to listen to what his engineers were telling him. Most notably, Jobs insisted that the Apple III, like the Apple II, ship without a cooling fan. This time, no amount of clever engineering hacks could prevent machines from melting by the thousands. Perhaps due to the deeply un-Jobs-ian hackerish side of its personality, Jobs tried repeatedly to kill the Apple II, with little success; it remained the company’s biggest seller and principal source of revenue when he resigned from Apple in a huff following an internal dispute in 1985.

In February of 1981, Woz crashed the small airplane he had recently learned how to fly, suffering serious head trauma. This event marked the end of his truly cutting-edge engineering years, at Apple or anywhere else. Perhaps he took the crash as a wake-up call to engage with all those other wonders of life he’d been neglecting during the years he’d spent immersed in circuits and code. It’s also true, though, that the sort of high-wire engineering Woz did throughout the 1970s (not only with Apple and privately, but also with Hewlett Packard) is very mentally intense, and possibly Woz’s brain had been changed enough by the experience to make it no longer possible. Regardless, he began to interest himself in other things: going back to university under an assumed name to finish his aborted degree, organizing two huge outdoor music and culture festivals (The “US Festivals” of 1982 and 1983), developing and trying to market a universal remote control. He is still officially an employee of Apple, but hasn’t worked a regular shift in the office since February of 1987. He wrote an autobiography (with the expected aid of a professional co-author) a few years ago, maintains a modest website, contributes to various worthy causes such as the Electronic Frontier Foundation, and, most bizarrely, made a recent appearance on Dancing with the Stars.

Asked back in 2000 if he considered himself an entrepreneur, Woz had this to say:

Not now. I’m not trying to do that because I wouldn’t put 20 hours a day into anything. And I wouldn’t go back to the engineering. The way I did it, every job was A+. I worked with such concentration and focus and I had hundreds of obscure engineering or programming things in my head. I was just real exceptional in that way. It was so intense you could not do that for very long—only when you’re young. I’m on the board of a couple of companies that you could say are start-ups, so I certainly support it, but I don’t live it. The older I get the more I like to take it easy.

Woz has certainly earned the right to “take it easy,” but there’s something that strikes me a little sad about his post-Apple II career, as the story of a man who never quite figured out what to do for a second act in life. And the odd note of subservience that always marked his relationship with Jobs is still present. From the same interview:

You know what, Steve Jobs is real nice to me. He lets me be an employee and that’s one of the biggest honors of my life. Some people wouldn’t be that way. He has a reputation for being nasty, but I think it’s only when he has to run a business. It’s never once come out around me. He never attacks me like you hear about him attacking other people. Even if I do have some flaky thinking.

It’s as if Woz, God bless his innocence, still does not understand that he was really treated rather shabbily by Jobs, and that, in a very real sense, it was he that made Jobs. In that light, it seems little enough to expect that Jobs refrain from hectoring him as he would one of his more typical employees.

As for Jobs himself… well, you know all about what became of him, right?

							
		
	
		
			
				Eamon, Part 1

				September 18, 2011
			

[image:]

Videogames today can almost all be slotted into one of a collection of relatively stable genres: first-person shooter, real-time-strategy game, point-and-click adventure, action RPG, text adventure, etc. Occasionally a completely original game comes along to effectively carve out a whole new genre, as happened with Diner Dash and the time-management genre respectively in the mid-2000s, but then the variations, refinements, and outright clones follow, and things stabilize once again. One of the things that makes studying the very early days of gaming so interesting, though, is that genres existed in only the haziest sense; everyone was pretty much making it up as they went along, resulting in gameplay juxtapositions that seem odd at first to modern sensibilities. Still, sometimes these experiments can surprise us with how effectively they can work, even make us wonder whether today’s genre-bound game designers haven’t lost a precious sort of freedom. A case in point: Eamon, which used the interface mechanics of the text adventure but largely replaced puzzle-solving with combat, and also inserted an idea taken from Dungeons and Dragons, that of the extended campaign in which the player guides a single evolving character through a whole series of individual adventures.

As an actively going concern for more than twenty years and a system that still sees an occasional trickle of new activity, Eamon is one of the oddest and, in its way, most inspiring stories in gaming history. For such a long-lived system, its early history is surprisingly obscure today, largely because the man who created Eamon, Donald Brown, has for reasons of his own refused to talk about it for nearly thirty years. I respected his oft-repeated wish to just be left alone as I was preparing this post, but I did make contact with another who was there almost from the beginning and who played a substantial role in Eamon‘s evolution: John Nelson, who took over development work on the system after Brown and founded the National Eamon User’s Club. Through Nelson as well as through my usual digging up of every scrap of documented history I could find, I was able to lift the fog of obscurity at least a little.

But before we get to that I should tell you what Eamon was and how it worked. Though there have been a handful of attempts to port it to other machines, Eamon had its most popular incarnation by far on the computer on which Brown first created it, the Apple II. The heart of the system was the “Master Diskette,” containing a character-creation utility; a shop for weapons, armor, and spells; a bank for storing gold between adventures; and the first simple adventure, the “Beginner’s Cave.” This master disk was also the springboard for many more adventures, which number more than 250 at this writing. While each of these has many of the characteristics of a free-standing text adventure, there are two huge differences that separate them from the likes of the Scott Adams games: the player imports her own character to play with, with her own attribute scores and equipment; and they mostly replace set-piece puzzles with the tactical dilemmas of simulated combat. On my little continuum of simulation versus set-piece design, in other words, Eamon adventures fall much further to the left than even old-school text adventures, near the spot occupied by old-school RPGs.

[image:]

To modern sensibilities, then, Eamon adventures are CRPGs disguised as text adventures.

Indeed, the design of Eamon bears the influence of D&D everywhere. The idea of a long-term “campaign” involving the same ever-evolving character comes from there, as does the focus on combat at the expense of more cerebral challenges. In these ways and others it is actually quite similar to Automated Simulations’s Dunjonquest series, of which Temple of Apshai was the first entry. (The Dunjonquest system was also advertised as an umbrella system of rules for which the player bought scenarios to play, just as she bought adventure modules for her tabletop D&D campaign.) Brown is clearly more interested in recreating the experience of an ongoing D&D campaign on the computer than he is in the self-contained storytelling of what has evolved into modern interactive fiction. As such, it represents a fascinating example of a road not taken. (Until recently, perhaps; S. John Ross and Victor Gijsbers have recently been experimenting with the possibilities for tactical combat in IF once again, with results that might surprise you. Notably, both men came to IF from the world of the tabletop RPG.)

Yet Eamon also represents the origin of a road most decidedly taken, one that stretches right up to the present day. It is the first system created specifically for the creation of text adventures. All those who, to paraphrase Robert Wyatt, couldn’t understand why others just play them instead of writing them themselves now had a creative tool for doing just that. It may seem odd to picture Eamon as the forefather of Inform 7 and TADS 3, but that’s exactly what it is. In fact, it is the first game-creation utility of any type to be distributed to the computing public at large.

[image:]

Brown was a student at Drake University in Des Moines at the time that he created Eamon. While a couple of yearbook photos show him peeking out from the back row of his dorm house’s group pictures, he looks like a fish out of water amongst the other party-hardy types. He receives nary an additional mention in either yearbook, and didn’t even bother to pose for an individual picture. It’s doubtful that he ever graduated. Clearly, Brown’s interests were elsewhere — in two other places, actually.

His father purchased an Apple II very early. Brown was instantly hooked, devoting many hours to exploring the possibilities offered by the little machine. Soon after, a fellow named Richard Skeie started a new store in Des Moines called the Computer Emporium. The CE went beyond merely selling hardware and software, hosting a computer club that met very frequently at the shop itself, and thus becoming a social nexus for early Des Moines microcomputer (particularly Apple II) enthusiasts. Brown was soon spending lots of time there, discussing projects and possibilities, trading software, and socializing amongst peers who shared his geeky obsession with technology.

The other influence that would result in Eamon stemmed from the tabletop wargame and RPG culture that was so peculiarly strong in the American Midwest. Through an older friend named Bill Fesselmeyer, Brown plunged deeply into Dungeons and Dragons. But Fesselmeyer — and, soon enough, Brown — took his medieval fantasies beyond the tabletop, via the Society for Creative Anachronism.

Born out of a spontaneous “protest against the twentieth century” at Berkeley University in 1966, the SCA is a highly structured club — or, some would say, lifestyle — dedicated to reliving the Middle Ages. Still very much alive today, it has included in its ranks such figures as the fantasy authors Diana Paxson (the closest thing it has to a founder) and Marion Zimmer Bradley. From the club’s website:

The Society for Creative Anachronism, or SCA, is an international organization dedicated to researching and re-creating the arts, skills, and traditions of pre-17th-century Europe.

Members of the SCA study and take part in a variety of activities, including combat, archery, equestrian activities, costuming, cooking, metalwork, woodworking, music, dance, calligraphy, fiber arts, and much more. If it was done in the Middle Ages or Renaissance, odds are you’ll find someone in the SCA interested in recreating it.

What makes the SCA different from a Humanities 101 class is the active participation in the learning process. To learn about the clothing of the period, you research it, then sew and wear it yourself. To learn about combat, you put on armor (which you may have built yourself) and learn how to defeat your opponent. To learn brewing, you make (and sample!) your own wines, meads and beers.

That introduction emphasizes the “historical recreation” aspect of the SCA, but one senses that its role-playing element is an equal part of its appeal, and the aspect that most attracted D&D fans like Fesselmeyer and Brown. The SCA’s idea of club organization is to divide North America into “kingdoms,” each ruled by a king and queen. From these heights descend a web of barons and dukes, shires and strongholds. Each member chooses a medieval name and many craft an elaborate fictional persona, coat of arms included. The king and queen of each kingdom are chosen by clash of arms in a grand Crown Tournament. Indeed, chivalrous clashes are much of what the SCA is about; John Nelson told me of stopping by Brown’s house one day to find him and Fesselmeyer “sword fighting in the living room.” There is much about the SCA that resembles an extremely long-term example of the modern genre of live-action role-playing games (LARPs), a genre which itself grew largely out of the tabletop RPG tradition. It’s thus little surprise that Fesselmeyer, Brown, and many other D&D fans found the SCA equally compelling; certainly a large percentage of the latter were also involved in the former, especially in the gaming hotbed that was the Midwest of the 1970s.

If Brown is the father of Eamon, Fesselmeyer (who died in a car crash on his way to an SCA coronation in 1984) is its godfather, for it was he who pushed Brown to combine his interests into a system for role-playing on the computer. Brown likely began distributing Eamon out of the Computer Emporium at some point during the latter half of 1979. From the beginning, he placed Eamon into the public domain; the CE “sold” Eamon and its scenario disks for the cost of the media they were stored on.

In practice, the Eamon concept proved to be both exciting and problematic. I’ll get to that next time, when I look more closely at how Eamon is put together and how a few early adventures actually play.

							
		
	
		
			
				A Journey into the Wonderful World of Eamon

				September 24, 2011
			

Would you like to tag along with me on an actual Eamon adventure, to see how it really plays? Of course you would!

Eamon consists of a collection of BASIC programs spliced together with virtual duct tape and bailing wire. It’s an ingenious design given the limitations of a BASIC implementation running on an 8-bit computer, if also a bit horrifying to modern sensibilities of proper programming practice. Its structure is in fact strongly reminiscent of another early BASIC RPG we looked at not too long ago, Temple of Apshai.

All of the utilities on the Eamon master disk build a narrative frame around their rather prosaic functionality. When we boot up, the first scene that greets us is a hall of administration. (Yes, it seems that bureaucracy is alive and well even in the realms of fantasy.)

[image: The Wonderful World of Eamon]

If we fail to go to the desk as instructed, the results are unfortunate. Here we see the first example of the disconcerting glee Donald Brown takes in killing off his players in the most arbitrary fashion. Just imagine what sort of tabletop dungeon master this guy would have made…

[image:]

All of our current living characters are stored in a data file on the master list. If we follow instructions this time, we can choose one of them from the guild hall by simply entering a name.

[image:]

If the name we enter is not in our current stable of adventurers, we get the opportunity to create a new character. A second BASIC program (“New Adventurer”) gets loaded in, and we’re off.

[image:]

While Eamon‘s Dungeons and Dragons heritage is never less than obvious, its rules are not a slavish recreation of that system, if only because the technical realities of a 48 K computer make some serious simplification de rigueur. Case in point: the complexities of D&D characters are reduced to three randomly generated attribute scores, hardiness, agility, and charisma.

[image: Eamon character creation utility]

The system does not allow the player to have any role in the creation of her character beyond choosing a name and a sex. Three unlucky “die rolls” can leave her with an untenable character, and even a lucky role or two in the wrong place can leave her with a character she’s just not interested in playing. Similar problems quickly led to new house rules — and, eventually, official rules — for character creation in D&D, attempting to mitigate the effects of luck and give the player more opportunity to exercise choice at this critical juncture that could define the player’s experience for days, weeks, or months of play to come. Similarly if more simply, one of the first common Eamon add-on programs was the morbidly named but useful “suicide” utility that let the player blow up a weak or otherwise unacceptable character and try again.

Whether we create a new character or play with an existing one, our character gets removed from the main characters file and placed in one that holds just the currently active character (“The Adventurer”). After the obligatory nerdy Star Trek reference, a third BASIC program starts up, “Main Hall.” It reads in “The Adventurer” (having each stage leave a data file lying around is the only practical way to get all of these programs to talk to one another), and we find ourselves in Eamon‘s main utility program, once again disguised as a fiction of its own.

[image:]

Unlike Temple of Apshai, Eamon does have a rudimentary magic system consisting of four spells: blast, heal, speed, and power. The first three work as you might expect; the last is a rather ingenious cop-out, doing whatever the designer of a particular adventure decides it should do.

The “Main Hall” does have one unfortunate character, Shylock the banker.

[image:]

[image:]

I’m willing to give Brown a pass here, just because I don’t think he had a clue what sort of historical and cultural baggage his Shylock was toting behind him. And if one must crib antisemitism from someone, I can think of several worse people to draw from than Shakespeare. Anyway, let’s choose option 1 and go adventuring, shall we?

[image:]

We’ll start, like aspiring Eamon players for time immemorial, with the adventure included on the master disk, Brown’s own “Beginners Cave.”

As you might expect, this is the most complicated part of Eamon. Just before “Main Hall” requests a scenario disk it deletes the player’s character from the master disk entirely. When the player inserts the scenario disk, her current character is written out to the optimistically titled “Fresh Meat” data file. The program then looks to another data file that should be present on the scenario disk, “Eamon.name,” for the name of yet another BASIC program to run; this constitutes the actual adventure. Brown and later Eamon maintainers provided a starting framework for this program, representing the first consciously designed reusable adventuring engine to be made available for general use. In its stock form, it lets the player navigate around a network of rooms (whose connections and contents are stored in “Eamon.rooms,” whose names are stored in “Eamon.room names,” and whose descriptions are stored in “Eamon.descriptions”); to fight monsters (whose attributes are defined in “Eamon.monsters”); and to pick up objects (described in “Eamon.artifacts”). The latter, in a zenlike simplification, can be worthwhile either as treasures (good for gold back at the main hall) or weapons (good for bashing monsters in scenarios as well as gold at the main hall). Brown provided utilities for populating these data files appropriately, but doing so could obviously yield only a very basic (no pun intended) adventure. To build more complicated interactions, to (to choose an example from Brown’s documentation) make a sword that teleports its owner to a random room at random times, the designer must modify the BASIC code of the starting framework itself. The result is infinite possibility of a sort, if a rather ugly way of achieving same; Brown imagined such scenarios as an Eamon adventure where “you are leading an army into battle, with morale affected by your charisma!”

But today we’re just going on a simple sort of Eamon adventure.

[image:]

In my first post about Eamon, I called it a CRPG masquerading as a text adventure. That impression becomes all the more pronounced if we type something — and it’s not hard to do — that the simple two-word parser doesn’t understand. We get a list of all available commands in this adventure.

[image:]

That’s something you’ll seldom see in a more traditional text adventure. It says something about Brown’s focus; he’s interested in the parser only as a means of getting commands into his program, judging it a better tool for that purpose than menus given the limited memory and screen real estate he has to work with. There’s a comparison to be made here to Robert Lafore’s “interactive fiction” games, which are really Choose-Your-Own Adventure-style choice-based narratives masquerading as text adventures. The focus of early Eamon is firmly on character building and monster bashing, not puzzle solving. Its resemblance to Adventure and the Scott Adams efforts is more an accident of history than a sign of similar intent. On the positive side, that means that guess-the-verb problems and other classic old-school parser frustrations are largely absent in Eamon. Perhaps, depending on your predilections, less positively, most attempts to depart from moving about and hitting things yield little result.

[image:]

When “Beginners Cave” does try to get more ambitious, the results often leave you wishing it hadn’t. At one point you come upon a sinister, glowing book. If this happened in a tabletop D&D session, or even in a modern CRPG, you would have a variety of tools with which to investigate: perhaps a “detect magic” or “detect evil” spell, or a trip to the friendly local high-level mage. Here, though, we have only two options: just to recklessly read the thing or to leave it alone and wonder forever what it might be. If we read it, the worst quickly happens:

[image:]

And so we have here yet another example of an early ludic narrative wanting to indulge in storytelling possibilities (similar mysterious artifacts being a staple of D&D adventures) that its underlying technology just cannot yet support, resulting in the worst kind of unfairness.

Similarly, “winning” in “Beginners Cave” requires us to discover a secret passage by typing EXAMINE in just the right location.

[image:]

When we do so, we find a secret temple, and learn that our previously unstated goal was apparently to rescue “Duke Luxom’s not-too-bright daughter.” Ah, well, what would a quest be without a princess (or… what’s a duchess called before she becomes a duchess?) to rescue?

[image:]

[image:]

If we survive to return to the exit, our character is copied back over to the main disk, complete with whatever attribute improvements experience brought to him and whatever loot he picked up. If he doesn’t survive, he’s lost forever — remember, he got deleted from the master disk before we started the adventure.

I also recently played through a couple of other very early Eamon adventures: “The Zephyr Riverventure” (Adventure #4), by an employee at the Computer Emporium, Jim Jacobson; and “The Death Star” (Adventure #6), again by Brown himself. Both are much larger than “Beginners Cave,” but provide a similar mix of mapping, combat, and the occasional sudden death to keep everyone on their toes. “Riverventure” seems inspired by a movie of the time, Apocalypse Now.

[image:]

“The Death Star” is based on the same middle act of Star Wars that inspired Dog Star Adventure, and is interesting as the first Eamon adventure to push the system into another milieu entirely.

[image:]

[image:]

I’m most interested, at least for now, in understanding Eamon‘s place in the early history of computerized ludic narrative; thus the attention I give here to these very early incarnations of the system. It’s only fair to note, however, that the sophistication of many later Eamon adventures was vastly greater than that of these early efforts. What I say here should by no means be taken as the last word on the system.

That said, there are certain problematic aspects that are endemic to the system, even if we leave aside its core focus on randomized combat that usually comes down to watching the roll of virtual device and hoping for the best. In having players take their characters through a series of adventures, Brown clearly hoped to duplicate the feel of a classic D&D campaign, in which players play the same characters through a whole series of exploits, growing in power all the while, until retirement or death overtake them. In Eamon, though, death is too often capricious, coming at the whim of a designer. The dangers of combat are perhaps less problematic, but Eamon adventures were graded by difficulty in only the most cursory way, perhaps because, in the absence of defined character levels in Eamon, a consistent grading system was hard to devise. Small wonder that programs to “cheat,” to back up or resurrect characters, were soon included on the master disk itself. Such programs may ease considerable player pain, but they also of course to some extent pull against the core vision of Eamon itself.

I plan to finish this series off with the story of Eamon‘s post-Brown years very soon. If you would like to experience the system for yourself, the Eamon Adventurer’s Guild website is the best place to start. In addition to disk images of all Eamon adventures that you can load using an Apple II emulator, you can also get an idea of the experience through a Java applet playable online. The master disk and “Beginners Cave,” “The Zephyr Riverventure,” and “Death Star” among hundreds of others are all available to play that way.

							
		
	
		
			
				Eamon, Part 2

				September 25, 2011
			

One of the ironies of Eamon is that it reached it greatest aesthetic heights and greatest popularity long after its creator, Donald Brown, had abandoned it. For much in this blog entry I’m therefore indebted to the man who followed Brown as the head of the Eamon community, another Des Moines resident by the name of John Nelson. The reconstruction that follows is the best I’ve been able to do from Nelson’s memories and the other available documentation, but there is much about Eamon‘s history that remains sketchy or even contradictory.

Nelson first discovered Eamon in very early 1980, when he visited the home of an early player to trade comic books. At that time, there were just four additional adventures available beyond the base disk. By the time he bought his first Apple II from the Computer Emporium (no small investment at some $2500; Nelson had to sell his car to manage it), the collection was already up to ten. He met Brown himself at the Computer Emporium while making the purchase, and got from him the full set. In these early days Eamon saw little if any distribution beyond the circle of employees, customers, and hangers-on around the Computer Emporium. Most adventures were written either by Brown himself or by his immediate circle of friends; Jim Jacobson, Computer Emporium employee and author of “The Zephyr Riverventure,” was particularly prolific. That’s little surprise considering that in these earliest days creating an Eamon adventure was a tricky, undocumented process bereft of the tools and documentation that would come along later. Presumably, one virtually had to be in direct communication with Brown to have a chance of pulling it off.

That began to change when Brown released the first edition of the Dungeon Designer Diskette, a collection of utilities and information designed to at least begin to explain and automate the process. Still, it was only a beginning; the tools were still in a very primitive state. As the included Manual for Eamon Dungeon Designers attests, the programmer even had to do her own word wrapping when writing room descriptions: “If your description is longer than 40 characters, you must pad it with spaces so that when the description wraps around the Apple’s 40-column screen, the breaks are between words.” Further, Nelson describes Brown’s tools as prone to crashes and data corruption of all stripes. Nelson soon set to work improving these tools, if initially only for his own use, and making adventures: numbers 15, 16, 19, and 20 are all his work.

Up to this point Brown had been taking an active role in curating Eamon‘s growing library of adventures, testing each and, once it was judged ready, assigning it an official number in the collection and creating a disk for distribution from the Computer Emporium. But in 1981 Brown’s friends at the Computer Emporium decided that they had the talent to do more than just sell software and hardware; they would become software developers in their own right. They therefore formed CE Software (get it?), with the initial intention of concentrating on games. Given the hit that Eamon had become in the store, they asked Brown to come work with them on this new venture.

The result was SwordThrust, a commercial version of the Eamon concept. Just like Eamon, SwordThrust consisted of a master disk and a series of scenario disks through which the player was expected to guide the same character. The difference, beyond considerable additional complexity and refinement, was of course that the player had to pay for the privilege each time. Brown and CE gave SwordThrust a good hard try, releasing six adventures in addition to the base system, but the public just wasn’t interested in paying for an RPG system that looked like a text adventure. In 1982 CE pulled the plug, not only on SwordThrust but on all of its game-development efforts. But never fear, the story has a happy ending of sorts: CE and Brown went into productivity applications instead, and had a long and successful run there, most notably as the developers of QuickMail and QuickKeys for the Macintosh. In fact, CE Software is still alive today, long after the Computer Emporium closed its doors, under the name Startly Technologies.

But where did SwordThrust leave Eamon? That, as it happens, is exactly the question Nelson found himself asking when he saw Brown turning away from his first creation. He asked Brown if he could assume the role of Eamon‘s curator, to continue to verify and catalog new adventures and keep the system alive. Brown said okay.

Still, with its creator having abandoned it, there followed a fallow period for Eamon; by late 1982 the adventure count had risen to just 25. But then Nelson found a way to get the system some national exposure. In his own words:

About this time, an article appeared in Creative Computing magazine written by Robert Plamondon. He was lamenting about the lack of any really good text adventure systems for the Apple II computer. I contacted Robert and asked if he had ever heard of Eamon. He had not, but was interested. I sent him several of the diskettes and he was very happy with them. He asked if he could include me in a follow-up article about Eamon. I said sure, no problem. So a follow-up article appeared in Creative Computing and I started getting mail from people all over the world.

In a very real way that article, which appeared in the January 1983 issue of Creative Computing, marked a rebirth for Eamon. Word began to spread through user groups and electronic bulletin-board systems around the world, with Nelson serving as the central hub for cataloging and distribution. Encouraged by the new interest, Nelson founded the National Eamon User’s Club with a friend of his, Bob Davis. They published the first NEUC newsletter in March of 1984, which among other things served as a godsend for the writers of articles like this one; from this point forward we at last have ongoing documentation of events in the world of Eamon. By that time Eamon had already grown to some 50 adventures.

Nelson is in many ways the unsung hero of Eamon. In addition to curating and popularizing, he also did critical technical work, building from Brown’s buggy utilities a workable and properly documented Dungeon Designer’s Disk and implementing plenty of improvements to the core Eamon system itself. When his interest in the Apple II began to wane in the late 1980s, he began work on a new Eamon for the IBM PC which ultimately never came to fruition, and passed the NEUC and its newsletter to a particularly active club member named Tom Zuchowski. Zuchowski changed the name of the club to the Eamon Adventurer’s Guild but otherwise pretty much continued business as usual. By this point, early 1988, there were 155 adventures available through the club.

The years of Nelson’s NEUC newsletter, 1984 to 1987, appear to represent the very peak of Eamon activity. In the years that followed, interest and production slowly tailed off, mirroring the declining fortunes of the Apple II platform itself. Zuchowski published the last regular issue of his newsletter in January of 2001, at which time Eamon was approaching 250 adventures. There has been sporadic activity since then — one Wade Clarke even entered a new Eamon adventure in last year’s IF Competition — but for all essential purposes this event marks the end of Eamon‘s long run as a living system.

Even at its peak Eamon was always something of a semi-obscure oddity, seldom mentioned even in adventure-gaming circles. When Nelson turned the NEUC over to Zuchowski, there were 138 active, dues-paying members. It’s of course true that this number represents only the very hardcore, and that many times that number likely played Eamon from time to time on a casual basis. Still, by any measure Eamon‘s presence was a pretty small one in comparison with the gaming scene of the Apple II as a whole. What they lacked in numbers, however, they made up for in enthusiasm and a sheer bloody-minded determination to keep the system alive even as the platform on which it ran fell into obsolescence.

The approach to the text adventure that Eamon pioneered, replacing RPG-style combat and simulation for set-piece puzzle design, has generally garnered little acceptance outside the Eamon community, excepting the oeuvre of the late Paul Allen Panks. Indeed, for many years “randomized combat” was practically a synonym for terrible game design in IF circles. As I mentioned in my first post in this series, though, some thoughtful folks have recently been challenging that convention wisdom. Certainly the newer IF-development systems have already begun to allow more simulation-oriented storyworlds that replace some aspects of set-piece design with believable emergent challenges. And certainly the hundreds or thousands of people who have been hooked by Eamon over the years saw something there that even the well-respected works of companies like Infocom just weren’t giving them. How all of these factors will play out in the long run is, as always, yet to be determined. For now, I’ll just say that, much as I love and respect Infocom, it never hurts to consider how some other folks approached the art of the text adventure as well if you’re looking for ideas to draw from.

Eamon is also of great interest for being at the center of the first community of interest to form not just around playing ludic narratives but around creating them. This fact, showing as it does how a small but committed community could create impressive technology and impressive interactive art, may be the most important aspect of Eamon of all. We’ll be meeting quite a few heirs to its tradition later on in this blog.

But next up, we start down a slippery slope indeed, as graphics come to the text adventure for the first time.

							
		
	
		
			
				Ken and Roberta

				October 2, 2011
			

There are two prototypical kinds of “computer professionals” in the world. First there are the purist hackers, who dive into the depths of circuits, operating systems, and programming languages like explorers discovering new lands; it wasn’t by chance that away from the computer Will Crowther was a caver, nor that he now spends his time deep-sea scuba diving. For the purists the reward is in the thing itself, in learning to understand and navigate this binary wonderland and maybe, just maybe, someday making (or helping to make) something really, truly new and cool. The other group is made up of the careerists. These people end up in the field for some mixture of a variety of reasons: because they need to earn a good living to support their family (no shame in that); because they’ve heard computers are cool and the next big thing (hello, Internet bubble); because they have a vision of society which requires computers as its enabler (hello, Steve Job); because they just want to get really, really rich (why, there’s Steve again hiding out in the corner hoping not to be noticed — hi!). One thing only binds this disparate group together: they are attracted to computers not by their intrinsic interest in the machines themselves but by externalities, by a vision of what the machines can do, whether for them or for others. The two groups often seem — and believe themselves to be — at odds with one another, but in truth they need each other. Witness the dynamic duo of Woz and Jobs that built the Apple II and got it to the masses. Or witness Ken and Roberta Williams, the power couple of 1980s adventure gaming.

[image:]

Ken and Roberta married in 1972. He was just 18 at the time; she was 19. He was attending California Polytechnic Pomona University as a physics major, and failing; she was living at home and not doing much of anything. Contrary to what you might be thinking, there was no shotgun involved. He simply wanted Roberta in his life and was determined to have her there, permanently. Steven Levy writes that his words to her were simply, “We’re getting married, and that’s it.” She “didn’t fight it.” Right there you learn a lot about their two personalities.

Within a year or so of their marriage Ken, a restless, driven, somewhat aggressive young man with no real respect for or interest in higher education with its hierarchical structure and its abstract theorizing, could see he wasn’t going to make it as a physics major, much less a physicist. Roberta, meanwhile, was now pregnant. Ken needed a career, and he needed one quick.

In the early 1970s the institutional computer industry was nearing its peak, supplying mainframes and minicomputers by the thousands to businesses, universities, public and private schools, branches of government, and research installations. We’ve met several of the prominent companies already (IBM, DEC, HP), each serving their own core sectors of this huge market while competing with one another on the margins. Another was Control Data Corporation. Founded in 1957 by a group of refugees from an even earlier company, Sperry, CDC had by the early 1970s carved out a reputation for itself as a manufacturer of prestigious and expensive supercomputers of the type used for some of the most intensive scientific computing. The supercomputer market was, however, a small one, and so the bulk of CDC’s business was courtesy of its line of more plebian mainframes that competed directly with IBM for corporate business. To carve out a place for itself against the larger company, CDC tried to stick to a “10% rule”: to make sure each of its systems was always 10% faster and 10% cheaper than the nearest equivalent IBM model. For a number of years this approach was very good to CDC, sufficiently so that the company opened a little trade school all its own to train future custodians of its systems. Armed with a $1500 student loan co-signed by a very concerned father-in-law, Ken entered Control Data Institute. In doing so he was conforming to a stereotype that remains with the computer industry to this day: the pure hackers go to universities and get computer-science degrees; the careerists go to trade schools and get certificates in something “practical.”

Indeed, the atmosphere at CDI promised nothing like the free-wheeling intellectual exploration of the computer-science labs at MIT or Berkley. The emphasis was on pounding in the rote tasks and procedures needed to maintain and run the big, batch-processing mainframes of CDC at the banks and other large bureaucratic entities that housed them. And that suited Ken, hungry for career in business, just fine. Where an MIT hacker might have seen intolerable drudgery, he saw money to be made. When he turned out to be pretty good at this computer stuff — even within limits to enjoy it — that just increased the earning potential.

After finishing at CDI, Ken spent the rest of the 1970s living a life that we more typically associate with the following decade, bouncing from company to company in search of ever better salaries while generally also juggling two or three independent consulting gigs on the side. With computers still mysterious, almost occult objects to most people, a fast-talking, energetic, and ambitious young man like Ken could go far with just the modicum of knowledge he had gained at CDI. As that knowledge increased and he became an ever better programmer and problem solver courtesy of the best teacher of all, experience, he seemed even more of a miracle worker, and found himself even more in demand. Ken, in other words, was becoming a pretty damn good hacker almost in spite of himself. But he always wanted more — a new hot tub, a bigger house, a nicer car, a place in the country — even as he dreamed of retiring young and bequeathing a fortune to his children. (These things would in fact happen, although not in the way Ken thought they would in the 1970s.) Ken made no apologies for his materialism. “I guess greed,” he later told Levy, “would summarize me better than anything. I always want more.”

When the first kit computers that one could build in one’s home appeared in 1975, Ken barely noticed. There was no real money to be made in them, he believed, unlike his big, boring mainframes. When the trinity of 1977 marked the arrival of a PC you didn’t need a soldering iron to assemble, he likewise paid no attention. It was not until a couple of years later that the beginning of a real, paying market in professional business software, exemplified by pioneering applications like VisiCalc and WordStar, made Ken begin to pay attention to the little “toy” machines. When he finally bought an Apple II in January of 1980, it was for a very specific purpose.

At the time there were only two real language possibilities for Apple programmers: they could use BASIC, which was easy to learn and get started with but quickly became a nightmare when trying to structure large, complex programs; or assembly language, which gave the ultimate in precise control over the hardware but was well-nigh impenetrable for the uninitiated, tedious in the micro-management it required, and just as bereft of structure. Ken saw an opportunity for a more sophisticated high-level language, one designed to be used by serious programmers creating complex software. Specifically, he wanted to bring FORTRAN, as it happens the implementation language of the original Adventure (not that Ken likely knew this or cared), to the little Apple II. With that purpose in mind, he registered a company of his own, choosing to call it On-Line Systems, a name fairly typical of the vaguely futuristic, vaguely compound, but essentially meaningless names (Microsoft, anyone?) that were so common in the era.

And what was Roberta doing during these years? Well, she was raising the Williams’ two children and happily (at least to external observers) playing the role of housewife and homemaker. She had always been a painfully shy, passive personality who by her own admission “could hardly make a phone call.” If Ken seemed to already be living in the frenetic 1980s rather than the mellow 1970s, Roberta seemed a better match for the 1950s, the doting wife who took care of the children, made sure everyone in the family had a good breakfast, lunch, and dinner, and meekly entrusted the big decisions and the earning of a living to the man of the house. That makes what happened next doubly surprising.

Shortly before Ken bought that first Apple, and while the Williams’ second son was just eight months old, Ken happened to have a remote terminal at the house for one of his gigs. The mainframe to which it could connect had on it a copy of Adventure, which by now had been ported to a variety of other platforms beyond the PDP-10. Ken called Roberta over to have a look at what he regarded as nothing more than a curiosity. Roberta, however, was immediately transfixed. “I started playing and kept playing it. I had a baby at the time, Chris was eight months old; I totally ignored him. I didn’t want to be bothered. I didn’t want to stop and make dinner.” As Ken wondered what had become of his dutiful wife, Roberta stayed up most of the night playing, then lay awake in bed working through the puzzles in her mind. It was no doubt a relief to everyone when she finally finished the game after a month of effort.

But the respite didn’t last long. After Ken brought the Apple II into the home, it didn’t take Roberta long to learn about the works of Scott Adams. Soon she was back to obsessively playing again. But then another thought began to crowd out the conundrums of the games: what if she could make a text adventure of her own? She was turning the most inspirational corner I know, imagining herself as a creator rather than a passive consumer. Inspired mostly by Agatha Christie’s novel Ten Little Indians and the board game Clue, she began to sketch ideas for a text adventure as cozy murder mystery, a genre that the form had not yet tackled. When she was pretty far along, she took a deep breath and laid out her ideas to Ken.

The story concept was certainly innovative, but it wasn’t the sort of innovation that would immediately appeal to a guy like Ken, with little interest in game design in the abstract. He was rather interested in products he could sell, operating intuitively by a rule he would later, for better and perhaps sometimes for worse, codify and articulate regularly: “Games have to have ‘WOW-value.’ If you don’t say ‘wow’ when someone describes the game to you, or you see it from 10 feet away, there’s no reason to market the game.” At first, caught up in his FORTRAN software and his prior experience of computers only as serious tools of business, he was dismissive of Roberta’s little project. But as she persisted, and as he perhaps began to notice that companies like Adventure International were growing rapidly and making real money just like the “serious” software houses, he began to reconsider. Still, he needed something special, needed an angle to help their little game stand out from the likes of the established line of Scott Adams games.

He began to think about the Apple II, with its comparatively cavernous 48 K of RAM, its fast and reliable disk drives, and its bitmap graphics capability. What if he designed their game around the unique capabilities of that machine, instead of taking the portable lowest-common-denominator approach of Adams? And then came the brainstorm: he could use the Apple’s hi-res mode to include pictures with the text. That would certainly make their game stand out. Pretty soon FORTRAN was forgotten, and work on Mystery House (the first of a whole line of On-Line Systems “Hi-Res Adventures”) had begun in earnest. The husband-and-wife team were not that far removed from Woz and Jobs. Here, Roberta designed the thing out of her inherit fascination with the thing itself, while Ken enabled her efforts, providing the tools and support she needed to bring her vision to life and, soon enough, finding ways to sell that vision to the masses.

							
		
	
		
			
				Mystery House, Part 1

				October 8, 2011
			

When we left Ken and Roberta, they had just made the momentous decision to use the Apple II’s bitmap graphics capabilities to create an adventure game that featured pictures in addition to text. Roberta would be the first to admit that she was no artist, but she was up to creating some sketches that would suit the purpose; in a world with no graphic adventures at all, people after all wouldn’t be too inclined to criticize the aesthetics of the first one to appear. Still, pulling it off would require them to overcome two other challenges: how to get the pictures into the Apple II in the first place, and how to store them in such a way that they didn’t consume too much space on disk. This latter problem arose because Ken and Roberta were determined to provide pictures for every single location in the game, amounting to some 30 illustrations in all.

Creating pictures on the Apple II was a dicey proposition in early 1980, due not only to a dearth of usable paint programs but also to the lack of a suitable input device to use with them; mice were still years away, while drawing with a joystick, trackball, or keyboard was an inevitably sloppy, frustrating process. Ken and Roberta therefore ended up purchasing an ungainly contraption called a VersaWriter.

[image:]

The VersaWriter was far too persnickety to allow for free-hand drawing. The user was rather expected to insert a sketch under the transparent surface of the drawing area, and then to trace it using the stylus. The device was marketed as a tool for getting diagrams — flowcharts, circuit diagrams, floor plans, etc. — into the Apple II; its packaged software did not deal very well with the irregular lines and patterns typical of full-blown pictures. Apple itself had actually released a drawing tablet much more suitable for illustrations the previous year. Apple’s tablet, however, cost $650, while the VersaWriter could be had for less than $200. Still uncertain about this whole enterprise and desiring to do it on the cheap, Ken went with the VersaWriter. Now he needed to find a way to make it work. Like a good hacker, he promptly set to work writing his own software to operate it. In doing so, he actually solved his second challenge almost accidentally.

Storing 30 or more images on disk as simple grids of pixels would consume far more space than Ken had available on a single disk. If he wished to avoid the hassle of shipping the game on many disks and asking the user to swap among them, he needed to find a better way. With compressed graphics standards still unheard of (and likely too taxing on the little Apple’s 6502 if they had been), Ken hit upon the idea of storing each picture not as the data that made up the final product, but rather as a series of drawing commands that could be used to create it afresh. In other words, instead of being fetched from disk, the pictures in Mystery House are “drawn” anew by the computer each time they appear. (Or, for the more technically inclined: they are stored as vector graphics, not raster graphics.) The really elegant bit is that the drawing statements used to create them correspond with the motions of the stylus that traced them on the VersaWriter. Thus to store his graphics Ken needed only “record” the motions of the stylus as it traced Roberta’s simple drawings, then “play back” those motions on the screen when called for in the game. It’s a masterful little hack, one that shows how far Ken had come as a programmer from his days as a drone-in-training at Control Data Institute.

Combined with a simple parser and world model about on the level of the Scott Adams games, the final product looked like this.

[image:]

No, the graphics aren’t exactly lush. If you can bear with me getting just a bit technical for a moment, it makes a great exercise in platform studies to ask just why they look like they do.

The Apple II’s normal “Hi-Res” graphics mode provides a bitmap display of 280X192 pixels. The programmer can, however, optionally choose to reserve the bottom 32 pixels of the screen to display the bottom of the Apple II’s regular text screen, which lives elsewhere in memory. This mode proved perfect for a game like Mystery House, as well as plenty of others soon to come from On-Line Systems and others. Because the text screen persists elsewhere, one convenience feature is very easy to program: the player can, just by hitting enter on a blank input line, make the picture disappear, revealing her last several turns.

[image:]

Another tap of the enter key instantly restores the hi-res overlay, which has remained in memory. This was quite slick stuff in 1980, and the Apple II makes it trivial. It’s perfect for a game like Mystery House, almost as if Wozniak had anticipated this application when he designed it.

But, you might be wondering, why the bizarre coloration in the illustrations? To answer that, we need to look a bit more deeply at the way that hi-res mode works.

A bitmap graphics display is normally stored in memory as a long string of bits which are constantly fetched and painted to the screen. The exact amount of memory needed for the purpose obviously depends on the resolution of the display. But slightly less obviously, it also depends on the number of colors in our palette. If we allow just 2 colors (probably black and white), we need but one bit for each pixel. If we want to allow more, though, we need more memory. A 256-color palette, for instance, requires 8 bits, or 1 byte, to store each individual pixel. You are probably reading these words on a 24-bit color screen with a palette of well over 16 million colors, which must devote 3 full bytes to representing every pixel. (This mode is often inaccurately termed 32-bit color because modern hardware is happy to waste one full byte on every pixel to keep things aligned in a tidy way.)

Numbers like these were, of course, inconceivable in 1980. The Apple II Plus offered just 6 colors in hi-res mode. If you apply what you learned back in Computer Literacy, you can quickly conclude that we would need to devote 3 bits to each pixel to store an Apple II bitmap in the conventional way. (Using 3 bits actually gives a range of possible numbers between 0 and 7, which is overkill; 2 bits, however, is too few.) Let’s do a quick calculation: 3 bits per pixel * 280 horizontal pixels * 192 vertical pixels = 161,280 bits, or (dividing by 8) 20,160 bytes (a bit under 20 K). Now consider that we have 48 K of memory total available on the Apple II; devoting almost half of it to the display is untenable if we also want to be able to write programs of any complexity at all to actually take advantage of hi-res mode.

These realities weren’t lost on Wozniak. As in so many other areas of the Apple II, he came up with a way to do more with less. Rather than devote 3 bits to each color, he devoted just 1 — but reserved one bit in each byte for a special purpose, about which more in a moment. Then he defined a set of simple rules to determine what color each pixel would be. If a bit is not set, the pixel it corresponds to on the screen is also “off,” or black. If a bit is on, and the bit to either its left and/or its right is also on, that pixel appears as white. If a bit is on, is on an even x-coordinate, and the adjacent bits are both off, that pixel appears as violet or blue, depending on whether that eighth, reserved bit is set or not. A bit on an odd x-coordinate in the same situation follows the same rules to arrive at a green or orange pixel. This setup allows us to store a 280X192 6-color screen using only 7680 bytes. It brings with it, however, a collection of restrictions:

	A white pixel must have at least 1 other white pixel to its left or right. (In other words, a vertical white line drawn on the screen must be at least 2 pixels wide.)

	A pixel on an even horizontal coordinate can allegedly be white, black, violet, or blue, but not green or orange. If, however, the bit in question is off, and a colored pixel is adjacent, that color “bleeds over” to color in this supposedly black pixel.

	Similarly, a pixel on an odd horizontal coordinate can allegedly be white, black, green, or orange, but not violet or blue, subject to the same process as above.

	Each horizontal line consists of 280 pixels, but these are divided into 40 groups of 7. Pixels within each group can be violet or green, or blue or orange, but combinations are not allowed. (In other words, a single group of 7 cannot contain both violet and blue, green and orange, etc., pixels.)

	For any given pixel to be colored black onscreen, at least one bit adjacent to the bit in memory that represents it must also be black. (In other words, a black vertical line like a white vertical line must always be at least 2 pixels wide.)

With all that in mind (and yes, I know it hurts), we realize it’s perhaps more accurate to say that the Apple II has a horizontal resolution of just 140 pixels, since each pixel’s color is controlled so thoroughly by the pixel adjacent to it. And given that combined with what a royal bitch the hi-res mode was to work with for programmers, it’s worth asking whether this whole baroque scheme is really worth the headache. Woz’s tendency to produce stuff like this in the name of efficiency is one of the more problematic aspects of a generally brilliant engineer. (Remember, Atari had to redo Woz’s Breakout design because no one else could figure it out. This fact, legendary as it has become as a sort of proof of Woz’s genius, might reflect more poorly on him than it does on Atari’s engineers from a certain point of view…) Have a look at the image above once again. Notice how the vertical lines are all in green or violet, while the horizontals are in white? Ken could only have made those vertical lines white by doubling their thickness, and throwing all of the proportions off. The Apple II literally does not permit the simple black-and-white sketches he really wants to display. Crazy stuff, huh?

These odd patterns of coloration, not to mention the distinctive pastel tones of the colors themselves, make an Apple II display, then as well as now, instantly recognizable to anyone who’s spent any time at all with one. While its display is unusually idiosyncratic, the Apple II is by no means alone here. Displays from most early microcomputers exhibit telltale traces of their origin. It’s one of the things that make these old machines so appealing to some living in our modern world of anonymous technological perfection. Call it personality, or, if you must, call it soul.

Which doesn’t, of course, mean that contemporary users didn’t struggle like mad to find ways to overcome basic limitations like these. More on that later. But next time, we’ll see how Mystery House actually plays as a game, and ask what it means in historical context.

							
		
	
		
			
				Mystery House, Part 2

				October 9, 2011
			

Mystery House has been widely canonized as the “first graphic adventure.” To evaluate that claim, our obvious first step must be to decide just what a “graphic adventure” actually is.

Today, the term is generally taken to refer to mouse-driven games in which the user clicks hotspots on an image of her avatar’s surroundings to manipulate the environment. That’s more of a default configuration than a definition, though; other paradigms for interaction have been and still are sometimes taken to fall under the category. So, we need to do better. We have to be particularly careful in deciding just where the boundary between the text and the graphic adventure should lie. A few years on from the point we’ve made it to in this blog (1980), many text adventures would be available that offered up occasional pictures to accompany their textual descriptions. Whatever they added, these pictures were not interactive, and in fact often completely optional; the purist could simply turn them off and play in pure text with no consequences. Games like these are better termed illustrated text adventures than graphic adventures. The latter term implies that the graphics should be essential to the experience, not a mere ancillary add-on. In fact, that’s a pretty good start on a definition right there. Let’s further add that the graphics should be interactive, subject to manipulation by the player rather than mere storybook-style illustrations. So, let’s try this:

A graphic adventure is a form of ludic narrative which bears many similarities to the text adventure (or interactive fiction), favoring puzzles and story development over reflex-oriented action. However, the player and the program communicate with one another primarily through images rather than text. These images should be interactive — subject to manipulation by the player — and essential to the experience of the work.

Given those requirements, my first instinct was to pooh-pooh the idea of Mystery House as the first graphic adventure when I recently picked it up again after many years. It was, I thought, obviously the first illustrated text adventure — a significant development in its own right — but at heart it was still “merely” a text adventure. Boy, was I wrong. It actually leapfrogs over the logical next step — the illustrated text adventure — to do something much more audacious. Much of the core of the game does indeed play out not in text but in pictures.

Let me show you what I mean. Here we are at the beginning of the game, having just walked into the entry hall of the mansion.

[image:]

That note (helpfully labeled “NOTE” in giant letters) at the bottom left is not described anywhere in the text; we know it is there only through the picture. Now, look what happens when we pick it up.

[image:]

It disappears! These are not mere static images, but genuinely interactive graphics. When we read the note, the results once more appear not in the text but in the graphics area.

[image:]

If we take the note somewhere else and drop it, sure enough, it appears again in the scene.

[image:]

Easy as it might seem to laugh at the scrawled, stick-figure pictures themselves, this was remarkable, remarkable stuff for its time. The Williams are prototyping here a whole new paradigm for adventuring while even the text adventure was still in its relative infancy. The novelty of the technology on display here alone was sufficient to generate many thousands of sales.

And that’s fortunate, because the game itself is no better than it ought to be given the inexperience of Roberta. It’s allegedly a mystery story, but it’s an oddly static mystery; as soon as we depart from the entry hall for the first time, five of the seven people we saw there are immediately distributed around the house as dead bodies, giving us no chance to avert any of the deaths. We can only hunt around through the typical adventure-game secret passages and mazes until we arrive at the final confrontation with the obvious murderer; in no sense do we “solve” the mystery at all, unless by process of counting up who is alive and, in the climax, who tries to kill us. The Count, still the gold standard for dynamic ludic narrative at this time, has nothing to fear. As if herself doubtful of her choice of genre, Roberta even shoehorns in the treasure-hunt subplot alluded to in the note shown above to move us back onto more traditional adventuring ground. The effect of this is to make Mystery House a cold-blooded, even morbid little game that’s blackly humorous in its absurdity. We wander around discovering corpse after corpse, but in finest adventure-game-protagonist fashion never let them deter us from hunting for those jewels.

[image:]

[image:]

The graphics make possible annoyances that are worse than typical for even this era, including perhaps the most cruel maze that had yet been seen in an adventure game. Even “normal” navigation is a constant struggle; the game’s instructions tell us that north is usually up on the screen, south down, etc., but it then proceeds to violate that guideline literally from the very first picture we see. The result is that we never feel entirely sure which way we’re facing, and thus never can orientate ourselves properly. Not that it would necessarily do much good; this is a classic adventure-game house in which nothing aligns properly with anything else, like a creation of a Victorian architect with an M.C. Escher fetish.

The dining room is a particularly noteworthy chamber of horrors.

[image:]

That object on the table is a candle, drawn a bit roughly but identifiable I suppose. That triangular… thing… on the back wall is supposed to represent a hole in the wall which for no apparent reason contains a crucial key. If we try to interact with the hole while carrying the lit candle or matches, we promptly trip, set the carpet on fire, and die if we don’t happen to be carrying a pitcher of water or cannot figure out in a single turn the syntax needed to use it on the fire.

[image:]

Oh, and in this case north is left and south is right, not that it’s possible to determine this through anything but trial and error.

A major “puzzle” has us MOVing a cabinet in the kitchen for no apparent reason, and even though the game has stubbornly disclaimed knowledge of that verb up to this point.

[image:]

After burrowing through the bricked-up hole that is revealed, we inexplicably find a fresh murder victim in the disused old secret passage beyond. Mimesis is not strong with this one.

So, no, Mystery House is not a very good game. In fact, it’s a sometimes hilariously bad collection of the worst adventure-game cliches. In light of its pedigree and its very real formal innovations, though, I’ve probably already harped on its many failings too much. Most of its contemporaries weren’t much better, and they weren’t also inventing a whole new paradigm of adventure gaming while they were about it. (I can, however, fault Roberta for continuing to design similarly bad puzzles long after she should have known better — but that’s material for later posts.)

If you’d like to experience Mystery House for yourself, I’d definitely recommend you treat it as an artifact of history rather than a serious gaming or narrative experience in its own right. In other words, use a walkthrough so you can laugh at its absurdities rather than cry. The easiest way to play it is via Java through the Virtual Apple II website.

							
		
	
		
			
				On-Line Systems is Born

				October 17, 2011
			

Once Roberta sold Ken on the idea of Mystery House, he — typically enough, given his personality — threw himself into it. In just one month during which Ken continued to hold down a day job, the couple implemented Mystery House in its entirety, including the design, writing, illustrations, and programming (in 100% assembly language for speed and efficiency, during an era when even most commercial software was still unashamedly coded in BASIC). Now they had to decide what to do with it.

When Scott Adams created Adventureland almost two years earlier, virtually all microcomputer software was marketed directly by the programmers / entrepreneurs who had created it, through advertisements they made themselves and placed in computer stores, user groups, and magazines and through semi-professional organizations like the TRS-80 Software Exchange. Thus, Adams had little choice but to cobble together packaging using business cards and baby-formula liners and have at it. Now, though, publishers — not least Adams’s own Adventure International — were rapidly professionalizing microcomputer software. The industry was still small, but it was growing rapidly, giving creators like Ken and Roberta with a novel product more options. The biggest of the publishers in the early Apple II market was called Programma International. (One of the amusing aspects of these early publishers is their fondness for the aspirational “International” even though their industry still existed almost exclusively inside the U.S.) In addition to a nice selection of tools for programming and productivity, Programma also published plenty of games. They instantly saw the potential of Mystery House when Ken and Roberta showed it to them. They offered a 25 percent royalty, promising the couple could easily earn $9000 on the game by the end of the year.

Ken and Roberta said no thanks. To understand why, you have to remember what kind of person Ken was — ambitious, driven, and unashamedly focused on the proverbial bottom line. He had already registered a company called On-Line Systems when he started planning that FORTRAN compiler. Why not sell it themselves, and keep all the money? To make the idea even more attractive, a friend of his had a simplistic little shooting game called Skeet Shoot that he was willing to let Ken market. With two actual products to sell, On-Line Systems was born in earnest in May of 1980. Figuring what was good enough for kidnappers and serial killers was good enough for them, Ken and Roberta made some advertising fliers by cutting letters and words out of magazines, pasting them onto backing stock, and photocopying the lot. With 100 blanks disks, Ziploc bags for packaging, and a couple of magazine advertisements, they were in business.

A few months ago I poked a bit of fun at Scott Adams for claiming credit on his website for “starting the entire multi billion dollar a year computer game industry.” The funny thing is, in a sense Ken and Roberta Williams could make a much more supportable claim to exactly that. Let me explain.

Having decided to go it on their own, Ken and Roberta’s first sales tactic was to visit every local computer store they knew to demonstrate their products. Luckily, there were quite a few of these; Ken and Roberta were living at the time in California’s Simi Valley, close to the sprawl of Los Angeles. Ken also called his younger brother John, at university in Illinois, to do the same there. John knew nothing about computers, and was very surprised to find that Ken’s new product was a game of all things, for he considered Ken a “chronic workaholic” who “didn’t have a fun bone in his body.” As he described in the tenth-anniversary issue of Sierra’s in-house magazine, John was soon traveling the country hawking On-Line System’s wares to computer stores:

When I visited a computer store, be it in Peoria, Illinois or New Orleans, Louisiana, the game was a hit. Never mind that I had to hand the game disk to the retailer I was trying to “sell” the game to because I didn’t know how to boot a game disk from BASIC. I always walked out of the store with an order. It seemed that Roberta and Ken had written a game that all those Apple owners out there (of which we knew there were at least 50,000) definitely wanted to play.

At this time, dozens of software publishers were either born or birthing, and some 1200 computer stores were doing business around the country, eager for programs to sell to their customers. What was missing was some means of connecting the two groups — in other words, distributors. Software companies like Adventure International were forced to accept orders directly from hundreds of individual retailers. An online profile of software distributor Merisel describes the problems this created:

In 1980 the computer software industry was in its infancy. Programs were written primarily in one-person shops by computer junkies, who did it more for love than for money. Getting this software to the 1,200 or so owners of computer retail stores was, at best, a hit-or-miss affair. If the software writer went on vacation, for example, the factory was closed and shipments stopped. Deciding which software to buy was even trickier. Approximately 95 percent of personal computer software was being sold by retail dealers, but few were in a position to evaluate and select stock from the huge number of programs available.

Ken, a keen business mind if ever there was one, forged connections with Adams and many other publishers to begin distributing their games to retail. (I’m almost certain this is the source of the odd claim that Adams made while being interviewed for Jason Scott’s excellent Get Lamp documentary — and repeated by Jason in an earlier comment on this blog — that Ken Williams somehow got his start with Adventure International as a “salesman.”) Within months, feeling overwhelmed with trying to run a software publisher and a software distributor and be a developer, Ken sold the distribution operation to Robert Leff, a colleague he knew from his years as a programmer for hire, for the uncharacteristically low price of just $1300. Leff in turn built the operation into SoftSel, a behemoth that came to dominate the retail software market behind the scenes, capable of making or breaking a publisher or even computing platform by the titles it chose to accept and the commitment it showed to them. Leff, a name few people outside the software industry knew even then, became one of the most powerful figures in the 1980s computing world. (SoftSel changed its name in 1990 to the aforementioned Merisel.)

There is a certain tang of the bittersweet to this progress. By setting up SoftSel, Ken and Leff effectively ensured that future hackers would not realistically be able to do what Ken and Roberta, Scott Adams, Lance Micklaus, and so many others had done, building viable businesses out of their kitchens and garages on nothing but new ideas and a talent for hacking. Eventually the grip held on the industry by distributors like SoftSel and the huge, conservative publishers that they aided and abetted would come to be blamed for the lack of innovation in and seemingly perpetual adolescence of the whole field of computer and video gaming, a state of affairs that has only begun to be satisfactorily remedied in recent years with the rise of online distribution. At the same time, though, the rapidly growing software industry of 1980 simply needed a SoftSel to get software efficiently into hands of ever growing numbers of consumers in those days of 300-baud modems and primitive telecommunications. In seeing this need and taking steps to meet it, Ken may have done more to shape the future than he would in all his future efforts with On-Line Systems (soon, of course, to be renamed Sierra). Chalk it up as the last huge step toward the professionalization of software, with all the good and bad that that implies.

Chalk it up also as another example of Ken’s savvy. Other than Bill Gates, I don’t know of another figure in the early PC world who combined such technical acumen with such an instinct for business. His influence is made all the more remarkable when one considers what a late starter he was in comparison to his peers, not getting into the game as he did until 1980. And believe me, there’s more significant stuff that Ken’s fingerprints are all over… we just haven’t gotten there yet.

But back to Mystery House, which was doing pretty well in its own right. Steven Levy writes, “Ken and Roberta made eleven thousand dollars that May. In June, they made twenty thousand dollars. July was thirty thousand.” (And remembers, these are 1980 dollars.) Around that time Ken quit his day job, and the Williams began preparing to pull up stakes and fulfill a lifelong dream — to live in the country, specifically the little town of Coarsegold, not far from Yosemite National Park. Meanwhile, having included their home phone number with Mystery House, both spent hours on the phone doling out hints and advice to frustrated players.

In the midst of this frenzy of activity, Ken and Roberta were also working hard on a new game to consolidate On-Line Systems’s position in the industry. Mystery House had changed everything by having pictures, but, let’s face it, they weren’t really very nice pictures. Their next game would change that by adding color to the equation.

							
		
	
		
			
				The Wizard and the Princess, Part 1

				October 20, 2011
			

Mystery House had been an experiment, done on the fly and on the cheap, to see whether there was enough money to be made in computer games to justify jumping in with both feet. Within days of the game’s release, the answer was plainly a resounding yes, and Ken and Roberta started working on systematizing the process and beginning a whole line of On-Line Systems “Hi-Res Adventures.” As Roberta sketched out a design — this time a more typical fantasy adventure, albeit one more inspired by fairy tales than Tolkien — Ken worked like mad to pull together a set of tools capable of implementing not just the next adventure but many more to come. Hackers love their tools, after all, and whatever his loyalty (or lack thereof) to the hacker ethic of elegant software as an idealistic end unto itself, Ken was no exception in this regard. Like Scott Adams before him, he coded a reusable adventuring engine, keeping the data that made up the new adventure separate from the interpreter that made it come alive — a move that would pay off in spades soon enough, when On-Line Systems began expanding its reach beyond the Apple II platform.

But most of all he devoted his attention to the thing that had made Mystery House stand out from its peers, its graphics. He and Roberta had been able to get away with the crude black-and-white sketches in that game thanks to the novelty factor, but the next game had to look better. He therefore set to work implementing a color drawing program to replace the clunky old VersaWriter-based system that had sufficed for Mystery House.

As I’ve mentioned before in this blog, before designing the Apple II or even Apple I Steve Wozniak had designed the Breakout arcade game for Atari. That experience came to shape the Apple II, for Woz, in his usual endearingly quirky way, took the ability to play an acceptable game of Breakout as a sort of baseline expectation for his new machine. This requirement was the main reason that the Apple II’s unique hi-res mode came to exist at all. Woz even made sure the machine’s BASIC had commands enough to make it possible to implement Breakout entirely using only BASIC statements. And Woz’s Breakout fixation was also the reason that a pair of paddle controllers shipped with every single Apple II and Apple II Plus — after all, they were what the arcade Breakout used.

[image:]

Given the fact that every Apple II owner automatically had a pair, paddles became the standard method of control for early arcade-style games on the platform, limiting as they could sometimes be. Joysticks remained for years a somewhat pricy and unusual novelty — to such an extent, in fact, that Ken designed his new drawing system to use paddles rather than a seemingly more appropriate joystick. With one paddle controlling the X-coordinate and one the Y, the user could (with a bit of practice) draw and fill pictures right on the screen. Perhaps more usefully than its supremely awkward free-hand modes, Ken’s software also functioned as a structured drawing system of sorts, letting the user connect points on the screen with straight lines. Once could even draw box sides in a similar fashion. Combined with another program, also of Ken’s devising, that let one draw and edit using Apple’s official graphics tablet, Ken and Roberta now had a downright state-of-the-art graphics workstation by the standards of 1980. Even better, they also had a couple more products to sell; Paddle Graphics and Tablet Graphics were hanging in stores in the usual Ziploc bags even before the game they had been written to create hit the scene.

Said game appeared in September, a scant four months after Mystery House, under the name The Wizard and the Princess. In light of all Ken’s other activities and the technical challenges he and Roberta had to overcome to create it, that time scale is almost unbelievable, but there you are. Those who plunked down their $32.95 and rushed home to boot the disk were greeted by this:

[image:]

Your reaction to the screenshot above may just be determined by how long you’ve been following this blog. If you’re a relative newcomer, you’re probably pretty nonplussed. If you’ve been reading since the beginning, though, following me through the black-and-white worlds of teletype text and the TRS-80, the monochrome utilitarianism of Temple of Apshai, and the not-quite-monochrome (but don’t you wish they were in lieu of those ugly splats of color?) naivete of Mystery House‘s pictures, you just might, if you’ve taken our time traveling to heart, feel some shadow of the awe that all those Apple II owners felt in 1980. This was stunning, stunning stuff, easily the most impressive graphical display that had yet graced an Apple. And this was Ken’s philosophy that a game should have “wow” factor, should sell itself if someone just booted it up inside a computer store, put into perfect practice.

If you’re not feeling it so much, don’t feel too bad. Actually, what you see above is not quite what players were seeing on their monitors in 1980. All of those tiny pinpricks of color stand out distinctly on our too-perfect modern digital displays. On a real Apple II monitor with its analog circuitry, however, those individual pixels tended to blend together, producing something that looked more like this:

[image:]

In fact, Ken was relying on exactly this phenomenon to produce the illusion of many more onscreen colors than the Apple II’s official 6. It’s a technique known as dithering. In the sales literature for The Wizard and the Princess, as well as those paint programs used to help create it, On-Line Systems claimed that Ken’s dithering technique effectively increased the number of possible colors from 6 to 21. It’s an effect that is lost on us when we play through emulation — and therein lies the lesson that, while emulation is important in its own right, sometimes we need real hardware to fully appreciate the software artifacts we study.

So, as a demonstration of graphical technology The Wizard and the Princess was truly a stunner. When we look at it as a game, the situation is, as with Mystery House, a bit more… complicated. We’ll get into that next time.

							
		
	
		
			
				The Wizard and the Princess, Part 2

				October 21, 2011
			

It’s 1980, and we just bought The Wizard and the Princess. Shall we play?

After the game boots, we find ourselves in the village of Serenia. We are about to set off to rescue Princess Priscilla from the “great and dreadful wizard” Harlin. And so we stride boldly forth, armed with wits and bravery, ready to conquer… the tedious 15-room desert maze that begins immediately outside of town. An hour or so of careful mapping later, we have determined that our path out of this monstrosity is blocked by a snake that refuses to let us pass. Naturally, being the destructive adventuring type that we are, we start casting about for some way to kill it. Perhaps one of those rocks that are scattered throughout the maze. So we try to gather one up… only to be killed by the scorpion that lurks underneath. After trying every nonsensical thing we can think of, we finally call up old Ken and Roberta themselves for a hint, whereupon we learn that we were on the right track to start with. It’s just that there is only one rock in the maze that doesn’t shelter a scorpion, and that we can therefore pick up without getting killed. Since there is absolutely no way to identify this rock, we get to spend the next hour dying and restarting until we find the right one. If we’re not so excited about watching those pretty but monotonously similar desert pictures draw themselves in slowly again and again by this point, perhaps that’s understandable.

In 1993, when the modern interactive-fiction community that still persists today was just getting off the ground, Graham Nelson wrote up a “Player’s Bill of Rights” to begin to codify good adventure-game design practice. Just in its first few turns of play The Wizard and the Princess has managed to violate 4 of 17 rights: “Not to be killed without warning”; “To be able to win without experience of past lives”; “Not to need to do boring things for the sake of it”; and “Not to be given too many red herrings.” In light of that achievement, I started wondering how many in total the game could manage to trample over. Let’s see how we go…

[image:]

Not to need to do unlikely things. Not long after bashing one snake with a rock, we encounter another pinned beneath a rock (snakes and rocks obviously figure prominently in this stage of the game). This new snake is presumably as dangerous as the last, and judging from our handling of the first one we aren’t exactly fond of our scaled cousins — but that doesn’t stop us from kindly freeing the snake from his predicament. Turns out he was king of the snakes, and even has a magic word to give us in thanks! (What I’d like to know is just what sort of reptilian royalty manages to get itself stuck under a rock in the first place. Are the snake proletariat classes in revolt?)

Not to depend much on luck. Our encounter with the kindly snake was an anomaly. Pretty soon there’s another chasing us around wanting to kill us. We have to find a stick in another location in the desert, then hit the snake on the head with it to drive it away (an image I find strangely hilarious). If the snake should (randomly) appear at the wrong place or the wrong moment, though, we won’t have time to do that — and it’s curtains for us through no fault of our own.

To have a decent parser. Further on in this endless desert, we discover a couple of notes just lying about, as is common in deserts everywhere. Both are known simply as “note”; the parser apparently randomly selects one when we try to interact with a “note” while both are in our current location. The only way to consistently work with one or the other is to keep each in a separate location entirely. Stuff like this makes me want to write this right in all capital letters, like this: TO HAVE A DECENT PARSER, DAMN IT!

[image:] [image:]

Not to be given horribly unclear hints. Yet further on in the desert we come to a deep, uncrossable chasm. We have to enter the magic word “HOCUS,” whereupon a bridge materializes. I’m not exactly sure how the player is expected to divine this word, but my best guess is that one is supposed to somehow extract it from the contents of one or both of those notes I just told you about, and which are shown above. The one on the left kind of looks like “HOCUS,” doesn’t it? Maybe, if you squint just right? Of course, even if we make that intuitive leap we still have to go around typing “HOCUS” literally everywhere, until something finally happens. But by now the game has already pretty thoroughly ground our right to be exempt from “boring things” into dust with its best jackbooted thugs, hasn’t it?

[image:]

To have a good reason why something is impossible. We escape the mainland to a small island via a rowboat we find handily lying about. Having dealt with the usual inanities there, there comes a time when we are ready to leave. It might seem natural to use the rowboat that brought us there to travel onward, but that’s impossible. Why? I don’t know — the game just tell us, “I can’t go in that direction.”

To be allowed reasonable synonyms. We are actually expected to travel on using a potion of flight. (We can only figure out exactly where on the island to use it by drinking it over and over again, once in every room, restoring after each experiment. But by now a sort of Stockholm-Syndrome-esque complicity has set in, and we just accept that and go to work with a sigh.) The perfectly natural noun “potion” is not accepted here. We can only “DRINK VIAL” (an interesting thought…) or “DRINK LIQUID.”

[image:]

To be able to win without knowledge of future events. Moving on, we encounter a peddler offering what appear to be a pair of boots, a dagger, a wine jug, a magnifying glass, and a trumpet for sale. We have just one gold coin, and no idea which of these items we’re likely to need. So we have to save the game and start buying them one by one, each time moving on into the game looking for a puzzle we can solve with that item or the dead end that indicates we must have chosen wrong. And no, the peddler doesn’t have a trade-in policy.

[image:]

To be able to understand a problem once it is solved. At long last we come to the wizard’s castle. We’re confronted there by a closed drawbridge. It turns out that the correct solution to this problem is to blow the trumpet we bought from the peddler — there’s that question answered, anyway. I recognize some allusion to a returning knight blowing his horn to alert the castle of his return. But why should this work for us, the wizard’s enemy? Shouldn’t blowing the trumpet rather bring a fireball down on our head? And who opens the drawbridge? Certainly no doorman greets us inside. Or is it a magic trumpet? But if it’s a magic trumpet that gives one access to his stronghold, why the hell did the wizard give it to the peddler? Or did he lose it, and the peddler just sort of found it by the roadside? The world will never know…

Inside the castle, our showdown with the wizard is one of the most anticlimactic finales ever. In lieu of the wizard himself, Roberta presents us with yet another enormous, empty maze. (At least the game, in ending as it began, manages a sort of structural unity.) We never even see him as a wizard, only as a bird he has for some reason chosen to transform himself into. Luckily we have a magic ring that briefly turns us into a cat — if we mess around with it long enough to figure out we need to rub it, not wear it, that is — and that’s that.

And Nelson’s other player’s rights? “Not to have the game closed off without warning,” “Not to have to type exactly the right verb,” and “To know how the game is getting on” are violated so thoroughly and consistently by the game that there isn’t much point in belaboring them.

[image:]

Not to need to be American to understand hints. This right was born from Nelson’s loathing for one particular puzzle, the infamous baseball diamond of Infocom’s Zork II (about which more when we get there); hence its unusual specificity. I think it can be better reframed as a prohibition against requiring too much culturally specific knowledge of any stripe. The Wizard and the Princess manages to not offend too deeply here, although there is one point where, having escaped from the mainland to a tropical island via a rowboat we found handily lying about, we have to give the cracker we found in the desert (amazing what turns up in the desert, isn’t it?) to a parrot. While not exclusively American, I believe the old “Polly want a cracker” meme is confined to the English-speaking world.

To be given reasonable freedom of action. Within the boundaries of the primitive parser and world model, the player does have reasonable freedom. It’s mostly freedom to hang himself, but still… freedom isn’t free, or something like that.

Without these last two, then, we are left with a solid 15 out of 17 potential violations. Not quite a perfect run, but a damn good effort.

So, having had my bit of fun, it’s time to say a few things. Some might regard it as a poor sport to so thoroughly rip apart one particular offender in an early adventure-game scene that was absolutely full of them. Roberta was after all, like other early designers, working without a net, with no received wisdom about good design practice, and with extremely primitive technology to boot. It’s a valid enough charge. The only defense I can offer, which is not really a defense at all, is that I feel particularly unforgiving toward Roberta because she just kept on doing this sort of stuff throughout her almost 20-year career, long after excuses about received design wisdom and technology ceased to hold water. And, having spent so much time with old-school adventures over the past six months, perhaps there did come a point where I just had to vent. Certainly this has been a complete violation of one of my normal policies for this blog, to always try to see the works I analyze in the context of their times. Maybe it’s a good idea to get back to that now, and to ask just why players accepted this stuff — to most outward appearances happily — in 1980, as well as what led designers to commit such violence against their players in the first place.

The Wizard and the Princess is even today not totally without appeal. There is something attractive about its fair-tale whimsy and its sprawling, discordant map. Discounting only ports of the original Adventure, The Wizard and the Princess was easily the largest adventure game yet to appear on a home computer. And then there are of course those pictures, the real heart of the game’s contemporary appeal. Quaintly appealing today, they were a technical tour de force in 1980, a reason to call family, friends, and neighbors over to the little Apple in the corner to just marvel. Owners of early home computers had had precious little immediately impressive to show off on their machines, just lots of blocky monochrome text showing the strangled English of Scott Adams or cryptic numbers and programming statements. Now they had something impressive indeed. Just as every generation considers its music to be rife with timeless classics and the music of the following generations to be worthless trash, every generation of gamers loves to accuse those who follow of being interested only in flashy graphics and sound. Well, guess what… every generation of gamers has always been interested in flashy graphics and sound. It’s just that this one had precious little of it available to them. If they had to find it in a game that has come to seem almost a caricature of obstinate old-school text adventures, so be it.

That said, there were gamers who reveled in the difficulty of games like The Wizard and the Princess. Some not only accepted balky two-word parsers but considered them part of the fun. In their view, solving a puzzle was a two-step process: figuring out the solution, and figuring out how to tell the computer about it. There was often an odd sort of machismo swirling around in these circles, as gamers who complain about obtuse gameplay were labelled as “not real adventurers.” To what extent this hardcore was rationalizing as a way of accepting the games they were stuck with anyway and to what extent they really, honestly liked guessing the verb and trying literally everything everywhere I’ll leave to you to decide. So much of gaming in this era was still in an aspirational phase, asking players to imagine that the primitive bundle of frustrations they were playing then was already the immersive interactive story everyone could see out there on the horizon, somewhere off in the future. Perhaps that begins to explain the curious sanguinity of everyone during the adventure game’s heyday, manifested in the refusal — still present in the nostalgic even today — to ever cry foul. But then the computer press was not terribly critical of any software, being bound up with the publishers as they were in a web of mutual self-interest. I know that as a kid who loved adventure games — or at least the idea of them — during the 1980s, I was frequently infuriated by the reality. I don’t think I was alone.

And the designers? Much of what led to designs like The Wizard and the Princess — the lack of understood “best practices” for game design, primitive technology, the simple inexperience of the designers themselves — I’ve already mentioned here and elsewhere. Certainly, as I’ve particularly harped, it was difficult with a Scott Adams- or Hi-Res-Adventures-level parser and world model to find a ground for challenging puzzles that were not unfair; the leap from trivial to impossible being made in one seemingly innocuous hop, as it were. However, some other pressures might not be immediately obvious. Consider that Ken and Roberta sold The Wizard and the Princess for $32.95. For that price, they needed to reward gamers with a good few hours of play. Yet there was a sharp limit to the amount of content they could deliver on a single floppy disk and a 48 K computer. (The Wizard and the Princess may have been an unusually big game by 1980 standards, but you can still easily get through it with a walkthrough in a half hour — and most of that time is spent waiting on pictures to load and draw themselves.) The obvious solution was to make the game hard, so gamers would be forced to spend literally hours scrabbling after the each tiny chunk of actual content. Later, as piracy became more and more of a problem, some designers perhaps began to see almost unsolvable puzzles as a solution of sorts, for that way they could still get the pirates to buy hint books. Sierra itself stated repeatedly in the later 1980s that its hint-book sales often exceeded the sales of their associated games. What it neglected to mention, unsurprisingly, was the obvious incentive to produce unfair games this created, to earn some money even from the pirates and increase profits overall.

The real danger of bad design practice, whether born of laziness, greed, or simple rigidity (“that’s just the way adventure games are”), is that players get tired of being abused and move on. And if other genres begin to offer compelling, even story-rich experiences of their own, that danger becomes mortal. Through the 1980s designers had a captive audience of players entranced enough by the ideal of the adventure game and the technology used to bring it off that they were willing to accept a lot of abuse. When that began to change… But now we’re getting way, way ahead of ourselves.

For now, suffice to say that, whatever its failings, The Wizard and the Princess became an even bigger hit than Mystery House had been. Softalk magazine’s sales chart for that September already shows it the second biggest selling piece of software in the Apple II market, behind only the business juggernaut VisiCalc. It remained a fixture in the top ten for the next year, eventually selling over 60,000 copies and dwarfing the sales (10,000 copies) of Mystery House. By the end of the year, Ken and Roberta had a number of other products on the market under the On-Line Systems label, and had rented their first office space near their new home in Coarsegold. The long suffering John Williams gave up his promising career as the world’s first software distributor rep to become On-Line Systems Employee #1, where his annual salary amounted to about what he had been earning in a month with the distribution operation. In a very real way, The Wizard and the Princess made the company that would soon go on to worldwide success as Sierra Online.

If you’d like to try The Wizard and the Princess yourself, I have a disk image here that you can load into your emulator of choice. We’ll be leaving On-Line Systems for a while now, but we’ll drop in on them again down the line, at which time I promise to try not to treat their other works quite so harshly.

Next up: another group of old friends we met in an earlier post.

							
		
	
		
			
				DunjonQuest

				October 28, 2011
			

I can hardly emphasize enough the influence that war games and tabletop role-playing games (particularly, of course, TSR’s Dungeons and Dragons) had on early computer-based ludic narratives. Sometimes that influence is obvious, as in games like Eamon that explicitly sought to bring the D&D experience to the computer. In other cases it’s more subtle.

Unlike traditional board or even war games, D&D and its contemporaries were marketed not as single products but as a whole collection of experiences, almost a lifestyle choice. Just getting started with the flagship Advanced Dungeons and Dragons system required the purchase of three big hardcover volumes — Monster Manual, Players Handbook, Dungeon Masters Guide — and to this were soon added many more volumes, detailing additional monsters, treasures, gods, character classes, and increasingly fiddly rules for swimming, workshopping, sneaking, thieving, and of course fighting. But most of all there were adventure modules — pre-crafted adventures, actual ludic narratives to be run using the D&D ludic narrative system — by the dozen, meticulously cataloged via an alphanumeric system to help the obsessive keep track of their collection; a trilogy of modules dealing with giants got labelled “G1” through “G3,” a series of modules originating in Britain was labelled with “UK,” etc. Whatever its other advantages, this model was a marketer’s dream. Why sell just one game to your customers when you can lock them into an ever-expanding universe of products?

TSR’s one game / many products approach to marketing and its zeal for cataloging surfaces even amongst early computer-game developers that were not trying to adapt the D&D rules to the digital world. Scott Adams, for instance, numbered each of his adventures, eventually ending up with a canonical dozen. (Other adventures, presumably worthy but not written by the master himself, were published by Adventure International as a sort of official apocrypha in the form of the OtherVentures series.) Players were encouraged to play the adventures in order, as they gradually increased in difficulty; thus could the beginner cut her teeth on relatively forgiving efforts like Adventureland and Pirate Adventure before plunging into the absurdly difficult later games like Ghost Town and Savage Island. On-Line Systems adapted a similar model, retroactively subtitling Mystery House to Hi-Res Adventure #1 when Hi-Res Adventure #2, The Wizard and the Princess, hit the scene. The next game, Mission: Asteroid, which appeared in early 1981, was subtitled Hi-Res Adventure #0 in defiance of chronology, as it was meant to be a beginner’s game featuring somewhat fewer absurdities and unfair puzzles than the norm. These similarities with the D&D approach are in fact more than a marketing phenomenon. Both lines were built on reusable adventuring engines, after all. Just as a group of players would have many different adventures using the core D&D rules set, the Scott Adams or Hi-Res Adventures lines were essentially a core set of enabling “rules” (the engine) applied to many different instances of ludic narrative.

Still, of the developers we’ve look at so far, the ones who most obviously mimicked the D&D model were, unsurprisingly, the ones who came directly out of the culture of D&D itself: Donald Brown with the Eamon system, and Automated Simulations, developers of the DunjonQuest line that began with Temple of Apshai. J.W. Connelley, the principal technical architect for Automated Simulations, designed for Temple of Aphsai a reusable engine that read in data files representing each level of the dungeon being explored. As it did for Scott Adams and On-Line Systems, this approach both made the game more easily portable — versions for the three most viable machines in 1979, the TRS-80, the Apple II, and the Commodore PET, were all available that year — and sped development of new iterations of the concept. These were marketed as part of a unified set of experiences, called DunjonQuest; the alternative medieval-era spelling was possibly chosen to avoid conflict with a litigious TSR, who marketed a board game called simply Dungeon! in addition to the D&D rules.

And iterate Automated Systems did. Two more DunjonQuest games appeared the same year as Apshai. Both Datestones of Ryn and Morloc’s Tower were what Automated Simulations called MicroQuests, in which the character-building elements were removed entirely. Instead the player guided a preset character through a much smaller environment. The player was expected to play many times, trying to build a better score. In 1980 Automated Simulations released the “true” sequel to Apshai, Hellfire Warrior, featuring levels 5 through 8 of the labyrinth that began in that earlier game. They also released two more modest games, Rescue at Rigel and Star Warrior, the first and only entries in a new series, StarQuest, which took the DunjonQuest system into space.

At least from a modern perspective, there is a sort of cognitive dissonance to the series as a whole. The manuals push the experiential aspect of the games hard, as shown by this extract from the Hellfire Warrior manual:

Whatever your background and previous experience, we invite you to project not just your character but yourself into the dunjon. Wander lost through the labyrinth. Feel the dust underfoot. Listen for the sound of inhuman footsteps or a lost soul’s wailing. Let sulfur and brimstone assail your nostrils. Burn in the heat of hellfire, and freeze on a bridge of ice. Run your fingers through a pile of gold pieces, and bathe in a magic pool.

Enter the world of DunjonQuest.

For all that, none of the games has any real plot within the game itself. Neither Apshai nor Hellfire Warrior even has an ending, just endlessly regenerating dungeons to explore and a player character to perpetually improve. And the MicroQuests reward their players only with an unsatisfying final score in lieu of a denoument. Datestones of Ryn has a time limit of just 20 minutes, making it, in spite of the usual carefully crafted background narrative of its manual, feel almost more like an endlessly replayable, almost context-less action game than a CRPG. The gameplay of the series as a whole, meanwhile, strikes modern eyes as most similar to the genre of roguelikes, storyless (or at least story-light) dungeon crawls through randomly generated environments. This, however, is something of an anachronistic reading; Rogue, the urtext of the genre, actually postdates Apshai by a year.

I think we can account for these oddities when we understand that Jon Freeman, the principal game designer behind the systems, is aiming for a different kind of ludic narrative than that of the text adventures of Scott Adams and On-Line Systems. He hopes that, given the background, a description of the environment, a set of rules to control what happens there, and a healthy dose of imagination on the player’s part, a narrative experience will arise of its own accord. In other words, and to choose a term from a much later era, he throws in his lot with emergent narrative. To understand his approach better, I thought we might briefly take a closer look at one of the games, Rescue at Rigel.

Rescue at Rigel draws its inspiration from classic space opera, a genre that had recently been revived by the phenomenal success of the first two Star Wars movies.

In the arenas of our imagination, not all of our heroes (or heroines!) wear rent black armor or shining silver mail, cleave barbarian foes on a wind-swept deck, or face a less clean fate at the hands of some depraved adept whose black arts were old when the world was young. Science fiction propels us about space-faring ships like Enterprise, Hooligan, Little Giant, Millenium Falcon, Nemesis, Nostromo, Sisu, Skylark, and Solar Queen into starry seas neither storm-tossed nor demon-haunted but no less daunting for all that — and lands us on brave new worlds whose shapes and sights and sounds are more plausible — but no less astonishing — then any seen by Sinbad.

[image:]

The Rescue at Rigel player takes the role of Sudden Smith, a classic two-fisted pulp hero. He is about to beam down to the base of a race of insectoid aliens known as the Toolah, who have captured a group of scientists for “research,” among them Sudden’s girlfriend. The Toolah provide one of the surprisingly few references to events in the broader world outside of fantasy and science-fiction fandom that you’ll find in very early computer games. The leader caste of the Toolah are the “High Toolah,” a clear reference to Ayatollah Khomeini who had recently assumed power in Iran and held 52 Americans hostage there. “High Tollah,” the manual tells us, “are smug, superior, authoritarian, intolerant, narrow-minded, unimaginative, and set in their ways.” In this light, the inspiration for the scientist-rescue scenario becomes clear.

The gameplay involves exploring the conveniently dungeon-like labyrinth of the Toolah base, warding off Toolah and security robots while searching for the ten scientists being held hostage there. It is, like so many CRPGs, essentially a game of resource management; Sudden has limited medkits, limited ammunition, and, most of all, limited energy in the portable backpack he must use for everything from shooting Toolah to beaming scientists to safety. Worse, he has just 60 minutes of real time to rescue as many scientists as possible and also beam himself back to safety. Freeman takes pain to make the game an engine for exciting emergent narrative. If Sudden runs out of energy completely, for instance, he still has one potential avenue of escape: if he can return to his beam-down location and be there in the 60th minute, an automated transporter beam will carry him to safety. One can imagine a desperate situation straight out of Star Wars or a Dominic Flandry story, the player racing back amid a hail of blaster fire as the clock runs down and Toolah dog his footsteps. Certainly one can imagine Freeman imagining it.

But living that drama requires a pretty substantial degree of commitment and a lively imagination on the part of the player, as one look at the rather ugly screenshot above will probably attest. Indeed, the DunjonQuest games feel always like a sort of hybrid of the digital and the tabletop RPG experience, with at least as much of the experience emerging from the player’s imagination as from the game itself. Perhaps it was a wise move, then, for Automated Simulations to target tabletop RPG players so aggressively in marketing DunjonQuest. After all, they were accustomed to having to roll up their sleeves a bit and exercise some imagination to come up with satisfying narratives. Automated Simulations advertised DunjonQuest extensively in TSR’s Dragon magazine, and, in a move that could hardly be more illustrative of the types of people they imagined enjoying DunjonQuest, even gave away for a time a strategic board game called Sticks and Stones with purchase of a DunjonQuest game.

In late 1980, Automated Simulations changed its game imprint to the less prosaic Epyx, adapting the tagline “Computer games thinkers play.” The DunjonQuest games just kept coming for another two years. Included amongst the later releases were a pair of expansion packs each for Temple of Apshai and Hellfire Warrior, the first examples of such I know amongst commercial computer games. The weirdest and most creative use of the DunjonQuest engine came with 1981’s Crush, Crumble, and Chomp!: The Great Movie Monster Game, in which the player got to take control of Godzilla (woops! Goshzilla!) or another famous monster on an urban rampage. (For a detailed overview of the entire DunjonQuest series, which eventually amounted to a dozen games in total, see this article on Hardcore Gaming 101.)

Crush, Crumble, and Chomp! was, as it happened, the last work Freeman did for Epyx. At the West Coast Computer Faire of 1980, he had met a programmer named Anne Westfall; the two were soon dating. Westfall joined Epyx for a time, working as a programmer on some of the later DunjonQuest games. Both she and Freeman were, however, frustrated by Connelley’s disinterest in improving the DunjonQuest engine. Written in BASIC and originating on the now aging TRS-80 Model I, it had always been painfully slow, and was by now beginning to look dated indeed when ported to more modern and capable platforms. In addition, Freeman, a restless and creative designer, was growing tired with endless iterations on the DunjonQuest concept itself; he had had to battle hard even to go as far afield as Crush, Crumble, and Chomp!. At the end of 1981, Freeman and Westfall left Epyx to form the independent development house Free Fall Associates, about which I will have much more to say in the future. And after a couple of final DunjonQuest releases, Epyx morphed from “Computer Games Thinkers Play” into something very different, about which I will also have more to say in the future. Solid but never huge sellers even in their heyday, the DujonQuest games by that time did not compare terribly well to a new generation of computer RPGs — about which, you guessed it, I will have more to say in the future.

If you’d like to sample the DunjonQuest experience, I can provide a sampler package with an Apple II disk image which includes Temple of Apshai, Rescue at Rigel, Morloc’s Tower, and Datestones of Ryn, as well as the manuals for each.

Next up: we begin to explore a work of unprecedented thematic depth that sets my literary-scholar proboscises all atingle.

							
		
	
		
			
				Edu-Ware

				November 5, 2011
			

In 1978 the Minnesota Educational Consortium (MECC), home of Don Rawitsch and his game The Oregon Trail, was on the cutting edge of computers in education — so much so that, long before business or the general public took much notice of the things, it began considering how to bring microcomputers into Minnesota classrooms as a supplement to the teletypes, dumb terminals, and large time-sharing systems that were the order of the day. MECC went to the leading producers of microcomputers of the time for bids, a list that was of course headed by Radio Shack. The Shack responded in its usual disinterested fashion.

Some of the companies, particularly Radio Shack, were not enamored with this process and thought it was kind of hokey — the process being the bid process and state requirements — and so they weren’t real particular about how they responded. We told Radio Shack, “You know, if you don’t respond in the right way we can’t accept your bid,” and they weren’t willing to change. Everything was flying high and they were selling TRS-80s like mad.

Although most in the MECC bureaucracy would have preferred to deal with large, stable Radio Shack, tiny Apple bid aggressively and enthusiastically, and won the day. MECC ordered 500 Apple IIs, a huge order in a year in which Apple would sell just 7600 machines in total. Granted, Apple discounted the sale so heavily that it’s doubtful they made much of anything from it. But that mattered not a whit. In a storied career filled with savvy marketing moves, Steve Jobs never made a savvier.

MECC not only began moving Apples into Minnesota classrooms, but also began porting its huge library of BASIC educational programs onto the platform. Let’s think about what this state of affairs means for a moment. MECC was already known all over the country as the leader in computer-based education, the example which all of the other more conservative, less well-funded educational institutions tended to belatedly follow. When those folks began thinking about microcomputers for their classrooms, they naturally asked what MECC was using: the Apple II. When they considered educational software, they once again had to take note of MECC’s rich library — a library being rapidly ported to just one microcomputer, the Apple II.

To push the process of educational adoption, by 1979 Apple was beginning to heavily promote the Apple II as an educational tool via advertisements like these:

[image:][image:]

Jobs realized that getting his computers into schools was the key to conquering a much bigger market: the home. Education was after all one of the most frequently cited reasons that families bought a computer. When Mom and Dad considered what computer to buy for Junior, the Apple II — the computer with all that educational software, the computer that Junior’s school was using, the computer that Junior himself had told them about and already knew how to operate — seemed to many the only logical choice, even if it did cost a bit more and, increasingly as time went on, didn’t have quite as impressive specifications as competing models. Those discounted Apple IIs for schools were loss leaders that paid off handsomely for years. Indeed, as soon as Apple had enough money to make it feasible, they increased their largesse, offering to give an Apple II absolutely free to every elementary school in the country. Moves like that created a stranglehold that even Apple itself was unable to break for years, when it wished the Apple II would just die already in favor of the Apple III and, later, the Macintosh. From the September 24, 1990, edition of InfoWorld:

Nearly 10 years later, elementary schools continue to buy Apple II technology. As a result, the strategy has kept what many industry observers contend is an overpriced and technically obsolete system in the mainstream. And it provided Apple with a virtual lock on the elementary school market that continues today.

That said, there was a bit more than smart marketing behind the Apple II’s classroom domination. Thanks to Woz’s chip- and circuit-saving design as well as the relative primitiveness of the machine itself, there wasn’t much to go wrong on the Apple II internally. And externally the thing was built like a tank. These factors helped the machines survive literally years of abuse at the hands of a whole generation of schoolchildren pounding their keyboards in frustration, poking at their screens with sticky fingers, and jamming the occasional floppy disk into a drive sideways. Teachers grew to love these tough little partners that offered them an occasional reprieve from classes full of wailing children.

Nor is it fair, regardless of the purity or lack thereof of Apple’s motivations in promoting education so heavily, to frame the discussion only in terms of sales and market share. Woz’s hackerish creation found itself a key player in an ongoing debate about the best way to approach education itself. We can perhaps come to understand that by looking at the career of one man, Sherwin Steffin. (Much of what follows is drawn from a portrait of Steffin and his company, Edu-Ware, that appeared in the May, 1981, issue of Softalk magazine.)

Steffin was not one of the young whiz kids of the microcomputer revolution. By the time Apple IIs began arriving in classrooms, he was almost 45 years old, with an impressive career in education already behind him. In addition to earning a bachelor’s degree in experimental psychology and a master’s degree in instructional technology, Steffin had combated gangs as a social worker in Detroit, taught junior high school for seven years, served as media director for a Chicago school district, served as coordinator of instructional system development at Northeastern University for four years, and developed instructional television for the National Technical Institute for the Deaf in Rochester, New York. From 1977, he worked as a senior research analyst at UCLA. The alleged crises in education that he wrestled with there sound eerily familiar today:

Conventional education was in serious difficulty. The end product was being perceived as less competent, less skilled, less curious, and lacking in the desire to learn.

Schools were filled with frustration. The teachers were getting the brunt of the public’s animosity, but the teacher had no mandate within which to work. It seemed that equally as important as teaching reading, writing, and arithmetic were his duties in teaching social skills, making the students patriotic, keeping them off drugs, and teaching them sex education without enlightening them about sex.

“Educational technologists” of Steffin’s generation tended to be greatly enamored with the theories of psychologist B.F. Skinner, inventor of “radical behaviorism.” Skinner believed that all human behavior is predetermined by genetics and by previous experience — the idea of a quasi-mystical “free will” was a useless chimera. He wrote a book, The Technology of Teaching, applying radical behaviorism to the field of education, outlining his idea of “programmed instruction.” Skinner proposed education as essentially a series of rote drills: the student is asked a question, responds, and is immediately informed whether her answer was correct, ad infinitum. Educational technologists developed “programmed learning machines,” automated devices to implement the concept of programmed instruction. Not surprisingly, they weren’t a big success. In a rare show of unity, teachers and students alike loathed them. Not only were they inexpressibly dull to work with, but teachers especially found them downright dehumanizing (a sentiment that, given the thrust of his ideas, Skinner may have embraced wholeheartedly). They correctly argued that many subjects, such as art and literature appreciation and critical thinking, could hardly be pounded home through rote drills.

Steffin began to diverge from his peers, finding the programmed learning machines inadequate. All their other failings aside, they were only good for what he called “convergent thinking, meaning that problems are posed and all students are brought to the same answer.” Divergent thinking, the encouragement of individual critical thinking skills and even opinion, was surely at least as important, for he believed that “thinking is the path to freedom.” With the arrival of relatively cheap microcomputers like the Apple II, Steffin saw a much more flexible tool for learning than the straitjacketed programming learning machines. In spite of having no programming experience or innate aptitude, he developed a program called Compu-Read to teach reading skills, first on UCLA’s big institutional system but later on an Apple II he had bought for research purposes. Like so many other semi-professional / semi-hobbyist programmers in those early years, he initially developed software as a sideline, licensing Compu-Read to the biggest of the early Apple II software publishers, Programma International. In the spring of 1979, however, Steffin was laid off from his post at UCLA. Rather than looking for another, he decided to jump into computer education with both feet, founding Edu-Ware in partnership with a UCLA student, Steve Pederson. Together they began churning out software at a feverish clip, copying the disks themselves and selling them in the Ziploc baggies that were typical of the era.

Edu-Ware’s offerings can be divided into three broad categories. Most were competent but plebian educational drills that, truth be told, were not all that different from the old programmed learning machines. Their names were about as unexciting as their contents: Compu-Read, Fractions, Decimals, Arithmetic Skills, Compu-Spell, Algebra. (At least no one could say they weren’t descriptive.)

In remarkably short order, however, other Edu-Ware programs began to appear that occupied a hazy space at the intersection of educational tool, game, and simulation. Windfall: The Oil Crisis Game placed the player in charge of large (albeit fictional) oil company. She could and presumably would try to win, of course, but she would also, inevitably, learn about a complex system that had almost broken down to produce the 1979 oil crisis. Network placed her in charge of a television network, balancing shows, schedules, and ratings, and learning about the pressures of mass media in the process. Terrorist focused on another subject much on people’s minds as the Iranian hostage crisis dragged on, placing her in the role of terrorist or government authority in hostage taking, airplane hijacking, or nuclear blackmail scenarios.

Created at a time when most other software either ignored the real world entirely or dealt with it only in the form of military hardware, these programs are remarkable for the way they determinedly engage with real, pressing social questions. But they are not just dry simulations. Each reflects an agenda, makes an argument about the world, making them perhaps the first examples of what has come to be called “persuasive games.” Their procedural rhetoric reflects the liberal worldview of Edu-Ware themselves. Network might even qualify as the first procedural satire, being inspired by the 1976 black comedy film of the same name.

And the third category? They don’t pretend to be simulations, or anything other than games for that matter, but they’re no less fascinating for all that. More on them next time.

							
		
	
		
			
				Interactive Fantasies

				November 7, 2011
			

In the early days of microcomputers, every sizable city seemed to have a store that not only sold hardware and software but became a social nexus for enthusiasts. The role that The Byte Shop played in Silicon Valley and that The Computer Emporium played in Des Moines was assumed in Los Angeles by Rainbow Computing. David Gordon, founder of Programma International, and Ken Williams both bought their first Apple IIs there and became regulars around the place. Sherwin Steffin of Edu-Ware was another regular customer. More than a customer, actually: he worked out a deal with Gene Sprouse, the owner, wherein Sprouse gave Edu-Ware a second Apple II system for the use of his partner Steve Pederson and Sprouse received Edu-Ware’s first game, Space, at cost.

Designed and programmed, like all of the earliest Edu-Ware efforts, by Steffin and Pederson themselves, Space was a science-fiction CRPG, the first of a line of “pure” games Edu-Ware labelled Interactive Fantasies to distinguish them from their educational products. The player generates a character using one module, then — shades of Eamon — imports that character into a scenario for play, and (if she survives) exports her again for play in other scenarios. Designed as just the first of a whole family of Space games, Space I features five scenarios in addition to the character generator. Its obvious inspiration — painfully obvious, in that Edu-Ware would later get sued over it — is the tabletop RPG Traveller (1977) from Game Designers’ Workshop, the first long-lived science-fiction RPG and one of the first of any stripe to appear from a publisher other than TSR.

A unique aspect of Traveller is its detailed character-generation system. Rather than just roll up some statistics, choose a character class and some spells, buy some equipment, and start adventuring as in Dungeons and Dragons, character creation in Traveller is a whole sub-game onto itself, kind of an RPG within an RPG, albeit one played at a much more abstracted level. The player creates not just some vital statistics for her avatar but a whole history, following her career in interstellar military service through a series of terms of service. Each term brings skills and experience, but also age, which eventually starts to have debilitating effects of its own. The player must thus balance experience against age in deciding when to retire from the service and start her adventuring career. Filling more than 20 pages in the original Traveller manual, character creation was so detailed and engaging that some grew into the habit of rolling up characters just for the fun of it.

Space might be described not so much as an adaptation of Traveller as a whole as an adaptation of the Traveller character-generation system. Even after the creation process per se is through, the individual scenarios are played at an unusually high level of abstraction, making them feel like a continuation of the same process. If, as some claim, the essence of a CRPG is the character-building process, Space has to be one of the purest examples of the form ever constructed.

Still, Steffin and Pederson felt constrained in Space and, indeed, many other ideas by their lack of formal programming education and skill. Therefore, when they met a young programmer at Rainbow with the technical skills they lacked and a head full of ideas, they took it as a godsend. His name was David Mullich.

Mullich’s route to computers had been a rather atypical one. As a child he had not been transfixed at all by the mathematics and science that fascinated most hackers; appropriately enough for a kid growing up in Los Angeles, Mullich had been a theater and film buff. With a dream of directing, he had seriously considered making film his major at university, but shied away when he arrived at Cal State Northridge and “saw hundreds of other students who had the same ambition.” Casting about for an alternative, Mullich tried a computer-science class, and fell in love with computers and programming. Soon he was officially a computer-science major, an artsy kid turned hacker. His instructor for a COBOL class happened to be Russ Sprouse, brother of Gene, who hired Mullich for his first contract programming job and later found him a gig as a regular employee at Rainbow.

Steffin and Pederson initially hired Mullich — still finishing up at university — as a part-time contractor. Under those terms he not only coded educational software but also wrote a second set of scenarios for Space as well as the original games Windfall and Network. He not only programmed these games, but conceptualized and designed them from scratch, and quickly at that. Network, for instance, was born when Steffin called Mullich and told him he needed a new game for a trade show next weekend. Mullich designed and programmed Network in three days flat.

As soon as Mullich finished university in 1980, he joined Steffin, Pederson, and sales manager Mike Leiberman at Edu-Ware as Employee #4. There he began working on the most ambitious project he had yet tackled: a computer game based on the classic British television show The Prisoner.

							
		
	
		
			
				The Prisoner, Part 1

				November 9, 2011
			

What with the Cold War threatening to turn into World War 3 more frequently than in any other decade, spy stories were all the rage in the West of the 1960s. There were the James Bond novels and films everyone remembers today, but also The Man from U.N.C.L.E., I Spy, The Spy Who Came in from the Cold, “Secret Agent Man,” and of course Get Smart to take the piss out of the lot. On British television, there was the ITC Entertainment program Danger Man, in which, amidst the usual profusion of gadgets, uncertain loyalties, and convoluted plots, Patrick McGoohan saved the free world 86 times in the role of superspy John Drake between 1960 and 1966. And then, just as Danger Man was making a name for itself in North America as Secret Agent and the series was making the big switch to color, McGoohan decided he’d had enough. He pulled the plug after just two color episodes that should have marked the beginning of a whole new, more opulent era for the show, pitching to ITC head Lew Grade a new series to take its place, one to which to the existing production crew could be easily transitioned. That idea became The Prisoner, a 17-episode series first broadcast on British television in 1967 and 1968.

In the first episode an apparent spy, once again played by McGoohan, abruptly decides to retire from the service, refusing to give any reason for the decision to his superiors. He is gassed after returning to his home, awakening to find himself in a place known only as The Village. On the surface it’s an idyllic place, a seaside resort of gorgeous views, clean air, and smiling fellow residents. However, said residents are not allowed to leave, and have in fact all been stripped of their identities. Each person on the island is assigned a number in lieu of her former name, and known only by that identifier; our hero, for example, shall be known henceforward only as Number 6. He soon learns that the Village is a sinister place of tricks and tortures mental and occasionally physical, where every resident lives under a paranoia born of constant electronic surveillance by the head of the place, a person known only as Number 2. (The question of who is Number 1 is one of the constant obsessions of the show, and resolved only in an oblique fashion in the final episode.) Oddly, a rotating cast of Number 2s come and go throughout the 17 episodes, mostly officious little types that illustrate the banality of evil. The goal of all of them is to break Number 6, to get him to tell them why he resigned. The bulk of the episodes concern the cavalcade of tricks they employ to try to accomplish that, always to be dashed in the end against the stalwart resistance of Number 6.

Two men are primarily responsible for the conception of The Prisoner: McGoohan himself, who in addition to starring also executive produced, wrote a number of scripts, and directed some episodes; and George Markstein, who served as script editor for most of the show’s run. Like McGoohan, Markstein was a refugee from Danger Man. The Prisoner was largely shaped by the tension between these two men’s ideas about the show. Markstein saw it as essentially a continuation of Danger Man, a confusing but ultimately grounded, understandable story. Tellingly, he tacitly assumed that Number 6, who is never given another name in the show, is in actuality John Drake of Danger Man, now embarked on another, unexpected phase of his “career.” McGoohan, however, saw the show as an allegorical tale of Everyman struggling with modern society. Tension in art is of course not always a bad thing, and in this case it gave The Prisoner space to explore McGoohan’s more heady ideas without coming completely unhinged from reality. After 13 episodes, though, the burgeoning conflict between the two men exploded, and Markstein left the production after an argument so acrimonious that the two men never spoke to one another again, and never spoke of one another in anything other than tones of contempt. (Markstein also reserved plenty of contempt for the series itself, calling the adoration it continues to receive a case of “the emperor’s new clothes” and calling its most rabid fans “pathetic.”) This rupture left McGoohan free to conclude the series with a final episode that abandons any claim to reality and is, depending on your point of view, either brilliant or a meaningless mess — or perhaps both.

When not twisting themselves into knots trying to superimpose a coherent narrative arc and proper viewing order onto the episodes of a very messy, very un-serialized series, fan debates about The Prisoner can spiral into some very heady intellectual territory. The longstanding fascination of the show derives from the questions it poses about the rights of the individual and the needs of society, questions it by design never definitively answers. “I will not be pushed, filed, stamped, indexed, briefed, debriefed, or numbered. My life is my own,” Number 6 announces in the first episode. While the show seems to implicitly ask us to see Number 6 as a hero, a hardcore collectivist could take this as an ironical portrayal, seeing Number 6 as a selfish egomaniac who refuses to abide by the necessary strictures of a civil society. Fans of the philosophy of Ayn Rand, meanwhile, can see Number 6 as their model paragon of selfish individuality. And there are a million other interpretations that line up somewhere between these extremes — and who knows, maybe even outside of them.

By its very nature The Prisoner seems to encourage fans to find inspirations that are dubious at best. As an example of the latter: a number of university courses have been taught about the show over the years, in which a common claim was that The Prisoner draws heavily from Franz Kafka. Certainly the Village and the whole scenario of The Prisoner bears a strong similarity to Das Schloß (The Castle), and the absurd pantomimes of legal trials in the episodes “Dance of the Dead” and the finale seem to have Der Prozeß (The Trial) stamped all over them. In an early 1990s interview, however, McGoohan definitively put paid to these “obvious” inspirations, saying he had “never read a Kafka.” This is not to say that Kafka does not live somewhere within The Prisoner, but filtered through the later, more grounded and obviously political versions of Kafka’s absurdist dystopias found in George Orwell’s 1984 and Aldous Huxley’s Brave New World, both acknowledged inspirations of McGoohan, and, just perhaps, within certain individual scripts not written by McGoohan. Even those trial scenes could be inspired by Orson Welles’s film version of The Trial rather than Kafka’s original source.

Some have gone yet further afield in seeking inspirations. There’s a great moment in one McGoohan television appearance in which an earnest young graduate student asks him if Angelo, a dwarf butler to the various Number 2s who is the only character other than Number 6 to appear in every episode, was inspired by the dwarf who accompanies Una and the Redcrosse Knight in Spenser’s The Faerie Queene; poor McGoohan, who obviously has no idea what the kid is on about, doesn’t quite know what to say in response. Even more so than with most works, The Prisoner seems a series in which people can find what they want to find — which is not necessarily a weakness. Certainly Kafka’s own works have the same qualities.

There is one immediately obvious difference between The Prisoner and the works of Kafka, Orwell, and Huxley: Number 6 is never broken. While many episodes end on an ominous note or a reversion to the status quo after a near escape, he never cracks, never breaks down and tells a Number 2 what he wants to know. Not infrequently, he turns the tables and actually wins a round, humiliating his would-be oppressor in the process. In “A, B, and C” Number 2 attempts to get to the truth by injecting Number 6 with a special drug that lets him control his dreams, only to have Number 6 replace the drug with water and lead him on an elaborate wild goose chase through Dreamland; in “Hammer into Anvil” (a genuine Goethe reference, much to the delight of grad students everywhere) Number 6 tells a a particularly odious Number 2 he “will pay for this” after a woman escapes Number 2’s torture only through suicide, and makes good on the promise; in the penultimate episode Number 2 and Number 6 engage in an extended psychological battle of wills that ends with a broken Number 2 quivering on the floor rather than Number 6, and marks the apparent moment of Number 6’s final victory over the forces of the Village. The contrast to the fragile protagonists of Kafka, Orwell, or Huxley, who are all in their own ways defeated before they even begin to fight, is striking indeed.

One might argue with some justification that this change is necessitated by the very nature of The Prisoner and the economic realities that constrained it; certainly the show was challenging enough without asking the audience to embrace the nihilistic fun of watching the hero be defeated and relentlessly dehumanized week after week. Yet I sense more than that going on here. McGoohan always steadfastly refused to say “what it all meant” beyond repeating that the show was an allegory, but we might find some clues — anti-New Criticism as it might be — in his own biography and beliefs.

For the creator of a show that has come to be seen as symbolic of the trippy 1960s, McGoohan was, well, a bit of a prude really. He allegedly refused the role of James Bond because he didn’t like 007’s womanizing ways and lack of principles, and even on Danger Man he was the always the show’s most stringent censor. He continued in this way on The Prisoner, where he never engaged in even a single onscreen kiss and, apart from the Western pastiche “Living in Harmony,” never even used guns. He repeatedly asserted that The Prisoner was clean, family-friendly entertainment. (That’s a claim that always struck me as really odd; there are many ways to describe The Prisoner, but “family-friendly” has never quite seemed one of them to me.) McGoohan was in fact throughout his life a devoted Catholic. Whatever you think of his beliefs, you can’t help but admire the man for hewing so steadfastly to them, even to the point of scuttling a potential career as Hollywood’s 007. McGoohan simply didn’t want to kiss anyone other his wife, onscreen or off, and how can anyone really fault a guy for that? Certainly he stands as a nice example as a religious man who practiced rather than preached.

When we allow McGoohan’s Catholicism onto the scene, it takes us to some interesting places. Perhaps we can find in The Prisoner an argument for the ineffability for man, for the ultimate unknowability of (for lack of a better term) the soul. It thus represents a push-back against those who would define consciousness as just a collection of physical processes to be cataloged and understand — a push-back against, for instance, the ideas of B.F. Skinner, against the philosophy of radical behaviorism that I briefly introduced a couple of posts ago. In “The Schizoid Man,” Number 2 implicitly constructs an experiment to test Skinner’s assertion that identity is an entirely social construction. He introduces a perfect doppelganger of Number 6 and tells Number 6 that the doppelganger is the real version of himself, surrounding him with evidence that seems to confirm the point. He even changes Number 6’s handedness with an electronic shock treatment, leaving only the doppelganger with the correct handedness. Yet, in a victory of Nature over Nurture, Number 6 clings to his true self throughout and finally wins the day, comprehensively defeating Number 2 and his doppelganger pal. Another episode, “The General,” launches an attack on Skinner’s approach to education. The Village has instituted a program called “Speed Learn,” in which subjects like history are reduced to a collection of dates and facts inserted into the minds of the residents in “15-Second Courses” that seem to operate through a sort of hypnosis. Afterward, the villagers walk around quizzing one another robotically, with every question having a single answer, a single correct interpretation. Nuance, debate, even thought have been eviscerated. The ending of the episode, in which Number 6 destroys the computer at the root of the program in best Captain Kirk style in a whirl of fire and smoke and the mystical question “Why?”, is weak, but the message is strong.

That, anyway, is some of what The Prisoner means to me. Before I get back to computer games, however, I do want to also make a note of the show’s sometimes overlooked formal qualities. If the fight scenes and special effects are a bit cheesy and the acting sometimes dodgy, there’s still a bracing audacity to the show’s presentation that I find kind of thrilling, even — perhaps most — in the episodes that don’t contribute so much to the show’s themes. “Many Happy Returns,” for instance, features not a word of English dialog until over halfway through its running time. And “Living in Harmony” inserts Number 6 into a Western and plays it to the hilt, even replacing the normal opening credits; only in the last ten minutes are we returned to the familiar environs of the Village. I can’t help but imagine how it must have felt for a 1967 television viewer to tune in to The Prisoner only to be greeted with a Western that happens to star the fellow who used to play Number 6. And then there’s that last episode, outlined in a weekend by McGoohan and improvised from there. It’s a riot of crazy imagery, with the much-speculated-upon Number 1 revealed to be a cackling Number 6 hiding under an ape mask, with a crazed firefight to the strains of the Beatles’ “All You Need is Love,” and with much of the Village launched into space aboard a rocket while Number 6 dances to “Dry Bones” on London’s A20 motorway. The last third is again virtually dialog-free, this time because no one had had time to write any. I’m largely with those folks who say none of it makes a lick of sense, but God do I love it anyway. It just pulses with the last thing you’d expect to find in a downbeat scenario like that of The Prisoner: the improvisatory joy of making art. And when it’s all over I walk away marveling that something this outré once appeared on prime-time television.

So, that’s a little bit of the material David Mullich had to work with in making a computer-game version of The Prisoner. We’ll look at how he ran with it next time.

							
		
	
		
			
				The Prisoner, Part 2

				November 14, 2011
			

David Mullich’s original plan was to write a game inspired by The Prisoner, but not a direct adaptation — an eminently sensible move considering that Edu-Ware did not own the intellectual-property rights to the show and were hardly in a position to purchase them. But Steffin and Pederson, displaying the cavalier attitude toward IP that would soon get them sued for the Space games, not only insisted that the game be called The Prisoner but even planned to use the original series’s distinctive logo. Understandably concerned, Mullich asked them to at least contact ITC Entertainment about the matter. So Steffin and Pederson called ITC and asked them whether they would mind if they — of all things — opened a Prisoner-themed restaurant. When ITC said that was okay, Steffin and Pederson reported back to Mullich that they had “permission.” They got lucky. ITC was at just that instant busy committing institutional suicide via two ill-conceived feature films: Can’t Stop the Music, a disco extravaganza starring the Village People released just in time for the big anti-disco backlash; and Raise the Titanic, an ambitious thriller which went so far over budget that it prompted ITC head Lew Grade to remark that it would have been cheaper to lower the Atlantic instead. Not only were both films commercial flops, but both also had the honor of being nominated for the first ever Golden Raspberry for Worst Picture, with Can’t Stop the Music nudging out its stablemate for the prize. Against that calamitous backdrop, the plundering of a ten-year old television series by an obscure little company in the obscure little field of computer games was not much on ITC’s radar. Yes, the media landscape was very different in 1980…

With that problem “solved,” Mullich set to work designing and coding. He created the entire game completely on his own in “about six weeks time.” That doesn’t sound like much, but remember, this is the fellow who created and coded Network from scratch in three days. The Prisoner in fact represented by far the most ambitious and complex project that Edu-Ware or Mullich had yet worked on. It consists of some 30 individual BASIC programs which are shuffled in and out of memory as needed by a machine-language routine, the only non-BASIC part of the structure.

The conflict in the television series revolves around the question of why Number 6 resigned from the service — the forces that run the Village insist he tell them his reasons, and Number 6 stubbornly refuses to do so. (Of course, whether the answer to this question is really the main priority of the Village, or whether they merely want to get him to surrender this point on the assumption that once he does it will be easy to break him entirely is very much an open question.) It’s very difficult for a player to communicate such an abstract idea to a computer program even today, however, much less on a 48 K Apple II. Mullich therefore replaced the reason with a single randomly-generated three-digit “resignation code” which is presented to the player for the first and only time when she begins to play.

[image:]

From here on, it will be the goal of the Island to get the player to reveal this code, whether accidentally or on purpose, while it will be the goal of the player to preserve the secret at all costs.

You may have noticed that I referred to the “Island” there rather than the “Village.” Perhaps in the interest of having a veneer of plausible deniability should ITC’s lawyers come calling, Mullich made a number of such changes. Rather than Number 6, for instance, the player is known as simply “#,” and the Island is run not by Number 2 but by the “Caretaker.” Even so, one never has to look hard for the source material; the player lives, as expected, in Building 6, and the Caretaker in Building 2. A bit of code diving even reveals that one of the component programs is named “Village”; apparently Mullich started with that name and never bothered to change the internal program name.

There are, however, also other influences at work here. George Orwell’s 1984 is referenced almost as prominently as The Prisoner television series. The three contradictory aphorisms of Orwell’s Oceania — “War is peace”; “Freedom is slavery”; “Ignorance is strength” — pop up over and over, singly or in tandem. The novel was also an important influence on the television show — “Questions are a burden to others; answers a prison to oneself,” reads a sign in the Village that could have come straight from Oceania — but here the debt is even more explicit. The game’s Wikipedia page currently also claims (without citation) a strong influence for Kafka’s Das Schloß (The Castle), but I’m not entirely convinced of this. While the player’s home on the Island is indeed called the Castle, there have certainly been many more surprising coincidences in literary and ludic history. I don’t really sense any other strong notes of Kafka here, and to my knowledge Mullich has never cited him as an influence. (If you know more about the validity or lack thereof of the Kafka claim, by all means chime in in the comments.)

Kafka homage or not, the game proper begins with us in our Castle, which we learn to our dismay is a big maze inside. Here we are introduced to the general tricksiness of the game. We can dutifully work our way through the maze until we come to the exit. However, we can also simply hit the ESC key (get it?) to get the same result. (ESC in fact gives unexpected results in several areas of the Island, as is obliquely hinted in a few places.) Whether we take the easy or the hard way out, we cannot exit until we answer the question, “Who are you?” The correct answer is of course “#,” but here we also see the first of many attempts the game will make to trick us into entering our resignation code. This time it’s pretty transparent, but never fear, the game will soon get much trickier.

[image:]

Structurally the game is build around a central spine, a map of the Island through which the player can wander.

[image:]

On this map are 20 individually numbered buildings, each housing a unique experience enabled by a BASIC mini-game all its own. Indeed, these games form a veritable catalog of BASIC game archetypes of the early microcomputer and late institutional computing era, the sort of concepts that in an alternative universe could have easily popped up on an HP-2000 system or the book BASIC Computer Games. In addition to the maze game in Building 6, we have a couple of ELIZA-like exercises in conversation and a game reminiscent of the early agricultural strategy game Hamurabi, albeit with the player manipulating the amount of power allotted to various Island systems rather than manipulating acres of land and bushels of crops.

[image:] [image:]

[image:]

In contrast to their friendly predecessors, however, this lot is an unforgiving bunch. Their messages are constantly off-putting. For example, two of the screenshots above show a famous John Donne quotation which the game twists into something sinister to join the 1984 sloganeering. If we win the Hamurabi-style game, we get a gold watch and a “place to retire,” the latter being of course the Island itself — a creepy commentary on the fate of those who are no longer considered economically useful to society. It all combines to create a constant sense of unease and paranoia. Instructions for play are often nonexistent and never complete, and the user interfaces are needlessly inconsistent. In some places, for instance, we can move an avatar using keys representing the three-dimensional compass directions of a real environment (“N,” “E,” “S,” “W”); in others, we must use the two-dimensional directions of the screen (“U,” “R,” “D,” “L”). There are hidden tricks everywhere, such that we sometimes feel it necessary to methodically tap every key on the keyboard looking for those commands the game hasn’t bothered to tell us about but which represent the only possible route to victory. And the games get tricky in other ways.

In the screenshot below, we’ve just been told to cross a pit (represented by the large white square) using “any means at our disposal.” Trouble is, all we can do is move our little avatar (represented, naturally, by the “#”) about — no jump command, no bridge-building command, nothing. What on earth to do?

[image:]

Well, if we methodically move over every square that is available to us, we eventually find a piece of rope. “What do you want to do with the piece of rope?” the game asks us then. “Cross the pit,” we reply. “Sounds doubtful,” says the game. And sure enough, trying to cross still results in us falling into the pit and being returned to the Castle as punishment. So we return and try again. This time we learn that continuing to search after finding the rope yields a “bundle of sticks.” But no dice, we fall in again. Returning again, we find a third object, a “rusty old wash tub.” Into the pit we fall yet again. Finally, the fourth object, an “inflatable raft,” does the trick.

That’s frustrating, but the contents of other buildings are downright baffling. The library quizzes us on our preferences in reading material, then somehow uses that information to decide whether to award us a vital clue or burn a book in our honor. I still don’t have a clue how its algorithm actually works, and suspect that may be part of its rhetorical point.

[image:]

Some buildings go beyond baffling to disturbing. Building 17 houses the Island’s version of the (in)famous Milgram Experiment, in which test subjects were told by an authority figure to continue shocking another person to the point of death, and to a disturbingly large degree complied. Here we get to do the shocking, if we choose.

[image:]

Throughout all this the game is constantly trying to get us to reveal our resignation code, through ploys obvious and subtle. The most devious of all comes when we visit the Hospital. In the midst of an absurd free-association personality test, we are suddenly dropped to BASIC with an apparent error message.

[image:]

The natural reaction to the above would be to LIST line 943 to see what the problem might be. If we do, however, we have just lost. The number 943 is of course our resignation code, and we have just been tricked into revealing it. There was never any real error at all; we are still in the program. We are still the Prisoner.

Just like in the television show, the game is constantly offering us a seeming chance for escape, then pulling the rug out from under us. We can in certain situations escape from the main complex to the wilderness around it. This is the only bit of the game to use the Apple II’s hi-res graphics mode; all other displays are built using low-resolution character graphics, which suit the game perfectly. The stark black-and-white displays have almost a Constructivist feel.

[image:]

If we can dodge the Rovers, semi-sentient guardians that are lifted directly from the show, we might be able to escape via an improbably placed train station. We do. We return home. We call up the “Company” that employed us.

[image:]

They ask for our resignation code, and when we refuse to give it we wind up right back where we started. This whole sequence is unusually direct about invoking television episodes like “The Chimes of Big Ben,” “Many Happy Returns,” and “Do Not Forsake Me, Oh, My Darling,” in which Number 6 seemingly returns to his home of London only to realize that his prison has followed him there as well.

Tricks like these leave us feeling a bit like Charlie Brown out for a rousing game of football with Lucy. When we meet a seeming resistance organization called the Brotherhood, we are therefore inclined to expect more of the same.

[image:]

The questions they ask us when we meet them doesn’t exactly reassure us:

“Are you willing to give your life, commit murder, commit acts of sabotage which might cause the deaths of innocent people, cheat, forge, blackmail, distribute habit-forming drugs for the cause of freedom?”

In addition to illustrating how a totalitarian society has a way of corrupting even those who believe they fight against it, they also parallel a bit too closely the questions that Orwell’s Brotherhood ask Winston and Julia in 1984:

“You are prepared to cheat, to forge, to blackmail, to corrupt the minds of children, to distribute habit-forming drugs, to encourage prostitution, to disseminate venereal diseases — to do anything which is likely to cause demoralization and weaken the power of the Party?”

That Brotherhood turned out to be an elaborate trap concocted by the Party establishment to trap would-be rebels just like Winston and Julia. By this point we’re not expecting much better.

Surprisingly, the Brotherhood turns out to be what it says it is. The fact that we are so inclined to doubt them provides a nice illustration of the effect that constant suspicion and uncertainty has on would-be resistance in a totalitarian society; even those with the bravery and inclination to fight are ineffective for lack of others they feel they can trust. (This idea was beautifully illustrated on several occasions by the television series.) If we do eventually decide to trust, we can carry out a few modest missions of sabotage and culture jamming. For one of these we must change the headlines of the local newspaper.

[image:]

The screenshot above shows one of the best a-ha moments in the game, a welcome respite from the constant sense of powerlessness and oppression — we need to enter each letter using its ASCII character code.

Carrying out these missions don’t let us do anything so grand as materially overthrow the island. They do, however, score points for us, and that’s very important, because various options only become available and events only occur when our score has reached a certain number. This adds yet another layer of obfuscation to the experience, as the whole world feels in constant flux due to our changing score. Thus we must constantly revisit locations and try things again and again to see if a higher score makes a difference in what we thought we knew. We can’t even use our score to judge how far into the game we really are. While the game gives the score as “XX” of “XX,” the latter value changes along with the former with no apparent rhyme or reason in yet another nasty psychological trick.

So, how does anyone other than a masochist with the patience of a saint ever beat this thing? The answer: you cheat. Here the fact that the whole game is written in BASIC is key. We can comb through the individual programs to figure out everything that is really going on in each one and, eventually, deduce the path to victory. If we’re impatient, we can even change some of the programs to give us a higher score or otherwise make things easier. In engaging in outright psychological warfare on us the game encourages us to break the rules on our side as well. I’m certainly not the first person to make the observation that “cheating” feels right here, entirely within the spirit of the game. Number 6 never got anywhere by behaving honorably to his oppressors; he twisted and lied and manipulated, just like they did, and we love him for it. Why not here as well? There’s a little thrill that comes when we ignore the supposed rules and start to hack. I don’t know whether Mullich imagined The Prisoner this way, but God does it work brilliantly in practice.

However we get there, we ultimately win by visiting the Caretaker and telling him that “the Island is just a computer game.” (We do need to have a sufficiently high score to be “ready for that realization,” contradicting Mullich’s claim in the Tea Leaves interview that it is possible to win instantly just by going to the Caretaker and telling him this.) With that realization behind us, we can unplug the computer and escape.

[image:]

And after one final halfhearted bid for our resignation code, the game sets us free.

[image:] [image:]

This final collapsing of the fourth wall is pretty brilliant. Just as some have argued that Number 6 was really a prisoner of himself (illustrated by the unmasking of Number 1 in the last episode), we have been voluntarily choosing to spend our time with this dystopian nightmare of a computer game. All along, we could “escape” simply by doing something else with our time. “To win is to lose,” the game tells us as its parting message, describing the feeling all gamers know of struggling with a game for days or weeks, longing for victory, only to wistfully realize… it’s all over now. Have we really won? Did Number 6 really escape?

The Prisoner is teeth grindingly, soul crushingly difficult, but there is an aesthetic point to its cruelty that is absent from other early adventure games. If the design sins of Scott Adams and Roberta Williams are those of inexperienced designers working in a new medium with primitive technology, those of The Prisoner serve a real artistic purpose. It’s the first work of its kind that the nascent computer-game industry produced, a sign of what this new medium could be used for, even (dare I say it) a striving for the claim of Art. Like much conceptual art it’s uncompromising, not really something to be casually recommended as a “fun game,” but fascinating in its commitment. Its approach, of being a sort of holistic computer game that makes the interface and the code used to build it and the fact that you are having this experience on an Apple II computer part of the experience of play rather than merely paths to same, has seldom if ever been duplicated. On today’s vastly more complex systems with less technically proficient users, that would probably not even be possible.

So The Prisoner is historically important, fascinating to talk about, and just brave as hell on the part of Mullich and Edu-Ware… but, no, I’m not sure I can precisely recommend it. In addition to all the usual challenges that games of its era present to the modern player, it requires either the patience of Job or a good subset of obsolete technical knowledge — or both — to beat it. If you do want to experiment, you should be aware that the game writes data to disk as you play; most of the disk images on the Internet therefore contain games already in progress. If you’d like a clean copy to start with on your real Apple II or emulator, I have one for you here. The zip also includes a 1983 SoftSide Selections magazine with instructions for play. (The Prisoner was re-released on the SoftSide disk magazine after the release of the enhanced The Prisoner II made it no longer viable for Edu-Ware to sell on its own.)

Be seeing you!

							
		
	
		
			
				A Word on Akalabeth and Chronology

				December 2, 2011
			

Just to demonstrate how thoroughly rotten my commercial instincts are, for my first post after returning from my little holiday hiatus I’m going to go all meta and esoteric on you and talk about a truly burning question: the exact dates of events in Richard Garriott’s early career as a game designer. I have a couple of reasons for picking these particular nits. The first and most self-interested is that I’m about to begin looking at old Richard, whom you might better know as Lord British, as my next big subject for discussion, and I want to preemptively defend myself against hordes of Ultima fans taking issue with my dating of events. The other is that this little tale may serve as an example of the process I go through to come to (my version of) historical truth, as well as the advantages and drawbacks of different sorts of sources. If you’re an historian, a reporter, or a researcher, you’re likely all too familiar with trying to reconcile separate pieces of credible evidence that nevertheless contradict each other. If you’re not, though, maybe you’ll be interested to know just what a digital antiquarian has to go through these days.

Garriott’s life and career has been better documented than that of all but a handful of game designers. In addition to countless magazine and Internet profiles, much of the book Dungeons and Dreamers was devoted to him, and the various editions of Shay Addams’s The Official Book of Ultima all fawned over him and his history with abandon. Given that, I was surprised to find myself so uncertain about the dating of Garriott’s first game, Akalabeth.

The story of Akalabeth has been told many times; if you haven’t heard it yet, stay tuned for my next post, wherein I’ll get back to historical narrative and tell you all about it. For now, though, the short version is that Garriott wrote it on his Apple II in the summer of 1979, while he was working at an Austin, Texas, ComputerLand store between high school (which he’d finished that spring) and starting at the University of Texas. His boss saw the game and suggested that he package it and sell it in the store, which Garriott did. Within days a copy had made its way — probably through the magic of piracy — to California Pacific, a major early software publisher. They flew young Richard out to California to sign him to a distribution deal, and Akalabeth became a huge hit, selling 30,000 copies and netting Garriot some $150,000 — not a bad nest egg for a kid to carry off to college. This is the story told in both of the books I mentioned above, and the one that Garriott has repeated in interviews stretching back literally decades. As the guy at the center of all these events, Garrott certainly ought to know. Yet when we start to dig into some primary sources the waters quickly muddy.

By far the best way I know to track the month-by-month doings of the early computer industry is via the magazines. In them we can watch as products are introduced and trends come and go, all with hard dates indelibly stamped right there on the covers. Sometimes, as in this case, the things we find there can upset chronologies that have come to be accepted as unchallenged fact.

Softalk magazine is one of the best resources on the early Apple II market. Surprisingly, Akalabeth does not appear there until the January, 1981, issue. Once it does, however, it appears in a big way, with a prominent mention in an article on California Pacific, a feature review, a listing at position 23 in Softalk‘s list of the top 30 Apple II software bestsellers, and the inauguration of a contest to deduce the real identity of Akalabeth creator Lord British (i.e., Garriott). Allowing for the typical magazine lead time of a couple of months, everything would seem to indicate that Akalabeth was in late 1980 a brand new product (at least on the national stage), more than a year after the standard narrative says Garriott wrote it. If we accept that, we are left with two possibilities, both of which to some extent contradict Garriott’s story. Either Akalabeth was not in fact picked up by California Pacific until more than a year after its creation, languishing in that time in obscurity while Garriott did the college thing, or it was not created in the summer of 1979, after his senior year in high school, but rather in the summer of 1980, after his freshman year at university. Howard Feldman recently scanned a copy of an original ComputerLand Akalabeth for his superb Museum of Computer Adventure Game History. That edition bears a copyright of 1980, which leaves me pretty confident that the latter scenario is in fact the correct one; Garriott himself as well as the conventional histories are off by fully one year. Further, I also find myself doubting Garriott’s sales claims. An article in the September/October, 1982, issue of Computer Gaming World tells us that The Wizard and the Princess, a game that was a Softalk top 10 perennial throughout late 1980 and 1981, had by mid-1982 sold just 25,000 copies. It’s hard to imagine how Akalabeth, which sneaked into the bottom parts of the top 30 only a few times during that period, could have ended up with the sales figures claimed.

Which of course leaves me wondering why Garriott has for so many years been saying things I’m almost certain are not true. While anyone who went around calling himself “Lord British” without a trace of apparent irony is maybe not quite the self-effacing sort, I’ve never seen anything to indicate that Garriott is dishonest. Indeed, in every interview I’ve seen he seems very level-headed and trustworthy. And it’s hard to see a reason why he might choose to knowingly falsify his dates. If having Akalabeth out in 1979 rather than 1980 maybe makes him seem slightly more of a pioneer, Garriott’s real record of accomplishments is certainly strong enough that it needs no boosting. Nor does an earlier release date give him a claim to any additional firsts; a 1979 Akabaleth is still far from the first CRPG, and his game is still not even all that impressive against the likes of Temple of Aphsai, a much more ambitious and sophisticated piece of software already released by that summer of 1979. And as for sales… well, Garriott’s later games would sell in such quantities that he hardly needed to inflate the numbers for Akalabeth to assert his claim to importance.

So, no, I don’t believe that Garriott is knowingly lying to us. I do believe, however, that the human memory is a tricky thing. Much as the current fad for all things neuroscience annoys me, I found this episode of Radiolab about the workings of memory pretty fascinating. It describes remembering as an act of imaginative recreation rather than a mere retrieval from storage, and makes the counter-intuitive claim that the more we remember something, the more we dwell on it, the more distorted and inaccurate it can become. That’s one reason I’m very sparing in my use of direct interviews (another reason of course being that plenty of people have better things to do than talk with me anyway). It’s very easy for a person to start to believe his legend, whether it originated with his own early press releases or elsewhere, and to insert that version of events into his memory in lieu of reality. Ironically, I find that less heralded figures such as Lance Micklus often offer the most trustworthy recollections, as their versions of the past have not been distorted by years of repeating the same deeply engrained stories.

Anyway, this provides an example of the process I go through in trying to get to historical truth, balancing sources against one another and trying to reconstruct the most viable version of the past. The most frustrating cases are those for which I just can’t gather enough evidence, as in the case of the Eamon timeline, in which I had a creator who refuses to talk about his creation, a major figure (John Nelson) absolutely certain of one timeline of events, a single magazine article which would seem to imply another timeline but which doesn’t do so quite definitively, and otherwise a complete void of credible information. That’s when I have to just throw up my hands and admit I just don’t know — which is frustrating, because if I can’t document this stuff it may never get done.

Actually, that raises a good point: the “so what?” aspect of all this. In the end it’s maybe not of world-shaking importance to know whether one game designer released his first creation in 1979 or 1980, nor whether it sold 30,000 or 3000 copies. But in another way it’s important to me to get this stuff right, and not just because of the trite but true maxim that anything worth doing is worth doing right. Interactive entertainment looks certain to be the defining media of the 21st century, and therefore to be something eminently worth studying. Those who write about videogames have generally done the form few favors — just another aspect of a form of media that seems to have a hard time growing up and realizing its potential. Whatever you think of books of lists, I can’t help but compare the 1001 Movies You Must See Before You Die or 1001 Albums You Must Hear Before You Die books with 1001 Video Games You Must Play Before You Die. The former are thoughtful, filled with a defensible if not absolute canon of genuinely great films and music; the latter is a mishmash of titles apparently plucked out of thin air, with commentary that often reads like it was lifted straight from the box copy. I’m not at all sure there even are 1001 videogames you “must” play, but surely there’s been enough good work produced in the last 35 years or so that we can do it a little bit better justice. I don’t want this to turn into a rant on the state of game journalism, so I’ll just say that I think we can do a better job of chronicling this medium’s history, and that this blog is my humble contribution to that ambition.

In addition, it’s kind of exhilarating to dig through the past and turn up things you didn’t expect. That’s already happened a number of times for me in the months I’ve been researching this blog, as when I discovered that Scott Adams had written eight of his “classic dozen” adventures before the 1970s were even over, or that the TRS-80 sold so well in its first couple of years that it left all the other platforms (including the legendary Apple II) fighting over the tiny non-Radio Shack scrap of the PC market. Put another way: primary sources rule. And hey, if stuff like that doesn’t interest you you probably never made it through this post, much less this blog. Let’s wallow in trivia together, shall we?

							
		
	
		
			
				Lord British

				December 12, 2011
			

[image:]

If you wanted to breed a game designer, you could do worse than starting with an engineer father and an artist mother. At any rate, that’s the combination that led to Richard Garriott.

Father Owen had quite a remarkable career in his own right. In 1964 he was at age 33 a professor of electrical engineering at Stanford University when NASA, in the thick of the moon race, put out the call for its fourth group of astronauts. This group of six would be different from all that came before, for, in spite of much grumbling from within and without the organization (not least from the current astronauts themselves), they would be selected from the ranks of civilian scientists and engineers rather than military pilots. Owen applied in the face of long odds: no fewer than 1350 others had the same idea in moon-mad America. He survived round after round of medical and psychological tests and interviews, however, until in May of 1965 none other than the first American to fly into space, Alan Shepard, called him in the middle of a lecture to tell him he was now an astronaut. Owen and family — including a young Richard, born in 1961 — moved to the Houston area, to a suburb called Clear Lake made up almost entirely of people associated with the nearby Manned Spacecraft Center. While Owen trained (first task: learning how to fly a jet), the rest of the family lived the exciting if rather culturally antiseptic lives typical of NASA, surrounded by science and gadgetry and all the fruits of the military-industrial complex. Whether because NASA did not quite trust these scientist-astronauts or because of the simple luck of the draw, only one from Owen’s group of six actually got the chance to go to the moon, and it wasn’t Owen. As a consolation prize, however, Owen flew into space on July 28, 1973, as part of the second crew to visit Skylab, America’s first semi-permanent space station, where he spent nearly two months. After that flight Owen stayed on with NASA, and would eventually fly into space again aboard the space shuttle in November of 1983. And those are just the adventurous highlights of a scientific and engineering career filled with awards, publications, and achievements.

Such a father certainly provided quite an example of achievement for a son, one that Richard took to heart: beginning with his kindergarten year, he entered a project into his school’s science fair every single year until he graduated high school, each one more ambitious than the last. But such an example could also, of course, be as intimidating as it was inspiring. It didn’t help that Owen was by nature an extremely reserved man, sparing of warmth or praise or obvious emotion of any stripe. Richard has spoken of his disappointment at his father’s inability to articulate even the most magical of his experiences: “My dad never told me anything about being in space. He once said it was kind of like scuba diving, but he never said anything with any kind of emotion.” Nor did Owen’s career leave him much time for Richard or his siblings, two older brothers and a younger sister.

The job of parenting therefore fell mostly to Helen Garriott. An earthier, quirkier personality than her husband, Helen’s passion — which she pursued with equal zeal if to unequal recognition as her husband’s scientific career — was art: pottery, silversmithing, painting, even dabblings in conceptual art. While Owen provided occasional words of encouragement, Helen actively helped Richard with his science-fair projects as well as the many other crazy ideas he and his siblings came up with, such as the time that he and brother Robert built a functioning centrifuge (the “Nauseator”) in the family’s garage. With the example of Owen and the more tangible love and support of Helen, all of the children were downright manic overachievers virtually from the moment they could walk, throwing themselves with abandon into projects both obviously worthwhile (the science fairs) and apparently frivolous (the Nauseator, in which the neighborhood children challenged each other to ride until they vomited).

For Richard’s freshman year of high school, 1975-76, Owen temporarily returned the family to Palo Alto, California, home of Stanford, where he had accepted a one-year fellowship. Situated in the heart of Silicon Valley as it was, Richard’s high school there was very tech-savvy. It was here that he was first exposed to computers, via the terminals that the school had placed in every single classroom. He was not particularly excited by them, however; indeed, it was his parents that first got the computer religion. Upon returning to Houston for his sophomore year, Richard dutifully enrolled in his high school’s single one-semester computer course at their behest, in which an entire classroom got to program in BASIC via the school’s single clunky teletype terminal, connected remotely to a CDC Cyber mainframe at some district office or other. Richard aced the class, but was, again, nonplussed. So his parents tried yet again, pushing him to attend a seven-week computer camp held that summer at Oklahoma University. And this time it took.

Those seven weeks were an idyllic time for Richard, during which it all seemed to come together for him in a sort of nerd version of a summer romance. On the very first day at camp, his fellow students dubbed him “Lord British” after he greeted them with a formal “Hello” rather than a simple “Hi.” (The nickname was doubly appropriate in that he was actually born in Britain, during a brief stint of Owen’s at Cambridge University.) The same students also introduced him to Dungeons and Dragons. With the pen-and-paper RPG experience fresh in his mind as well as The Lord of the Rings, which he had just read during the previous school year, Richard finally saw a reason to be inspired by the computers that were the ostensible purpose of the camp; he began to wonder if it might not be possible to build a virtual fantasy world of his own inside their memories. And he also found a summer girlfriend at camp, which never hurts. He came back from Oklahoma a changed kid.

In addition to his experiences at the computer camp, the direction his life would now take was perhaps also prompted by a conversation he had had a few years before, during a routine medical examination conducted (naturally) by a NASA doctor, who informed that his eyesight was getting worse and that he would need to get glasses for the first time. That’s not the end of the world, of course — but then the doctor dropped this bomb: “Hey, Richard, I hate to be the one to break it to you, but you’re no longer eligible to become a NASA astronaut.” Richard claims that he had not been harboring the conscious dream of following in his father’s footsteps, but the news that he could not join his father’s private club nevertheless hit him like a personal rejection. Even in late 1983, as he was amassing fame and money as a game developer beyond anything his father ever earned, he stated to an interviewer that he would “drop everything for the chance to go into space.” Much later he would famously fulfill that dream, but for now his path must be in a different direction. The computer camp gave him that direction: to become a creator of virtual worlds.

Back in suburban Houston, Richard began a D&D recruiting drive, starting with the neighbor kids with whom he’d grown up and working outward from there. By a couple of months into his junior year, Richard with the aid of his ever-supportive mother was hosting weekend-long sessions in the family home. By early 1978, multiple games were going on in different parts of the house, and even some adults had started to turn up, to game or just to smoke and drink and socialize on the front porch.

To understand how this could happen, you have to understand something about Richard. Although his interests — science, D&D, computers, Lord of the Rings — were almost prototypically nerdy, in personality and appearance he was not really your typical introverted high-school geek. He was a trim, good-looking kid with a natural grace that kept the schoolyard bullies at bay. Indeed, he co-opted them; those weekend sessions were remarkable for bringing together all of the usually socially segregated high-school cliques. Most of all, Richard was very glib and articulate for his age, able when he so chose to cajole and charm almost anyone into anything in a way that reminds of none other than that legendary schmoozer Steve Jobs himself. His later friend and colleague Warren Spector once said that Richard “could change reality through the force of will [and] personal charisma,” echoing the legends of Jobs’s own “reality distortion field.” He turned those qualities to good use in finding a way to achieve the ultimate dream of all nerds at this time: regular, everyday access to a computer.

With only one computer class on the curriculum, the school’s single terminal sat unused the vast majority of the time. On the very first day of his junior year, Richard marched into the principal’s office with a proposal. From Dungeons and Dreamers:

He’d conceive, develop, and program fantasy computer games using the school’s computer [terminal], presenting the principal and the math teacher with a game at the end of each semester. There wasn’t even a computer teacher there to grade him on his skills. To pass the class, he simply had to turn in a game that worked. If he did, he’d get an A. If it didn’t, he’d fail.

Incredibly — and here’s where the reality distortion field really comes into play — the principal agreed. Richard claims that the school decided to count BASIC as his foreign-language credit. (A decision which maybe says a lot about the state of American language training — but I digress…)

Accordingly, when not busy with schoolwork, the science fair (which junior and senior projects also used the computer extensively), tabletop D&D, or the Boy Scouts Explorers computer post he joined and (typically enough) soon became president of, Richard spent his time and energy over the next two years on a series of computer adaptations of D&D. The development environment his school hosted on its aging computer setup was not an easy one; his terminal did not even have a screen, just a teletype. He programmed by first writing out the BASIC code laboriously by hand, reading it through again and again to check for errors. He then typed the code on a tape punch, a mechanical device that resembled a typewriter but that transcribed entered characters onto punched tape (a ribbon of tape onto which holes were punched in patterns to represent each possible character). Finally he could feed this tape into the computer proper via a punched-card reader, and hope for the best. A coding error or typo meant that he got to type the whole thing out again. Likewise, he could only add features and improvements by rewriting and then retyping the previous program from scratch. He took to filling numbered notebooks with code and design notes, one for each iteration of the game, which he called simply D&D. By the end of his senior year he had made it all the way to D&D 28, although some iterations were abandoned as impractical for one reason or another before reaching fruition as an entered, playable game.

In building his games, Richard was largely operating in a vacuum, trying things out for himself to see what worked. He had been exposed to the original Adventure when his Boy Scouts Explorers visited the computer facilities at Lockheed, but, uniquely amongst figures I’ve discussed in this blog, was nonplussed by it: “It was very different from the kind of thing I wanted to write, which was something very freegoing, with lots of options available to you, as opposed to a ‘node’ game like Adventure. At that time, I didn’t know of any other games that would let you go anywhere and do anything.” From the very beginning, then, Richard came down firmly on the side of simulation and emergent narrative, and, indeed, would never take any interest in the budding text-adventure phenomenon. It’s possible that the early proto-CRPGs hosted on the PLATO network would have been more to his taste, but it doesn’t appear that Richard was ever exposed to them. And so his D&D games expressed virtually exclusively his own vision, which he literally built up from scratch, iteration by iteration.

But how did they play? Because they were stored only on spools of tape, we don’t have them to run via emulation. (On the other hand, Richard has donated a paper tape containing one of the games to the University of Texas as part of the Richard Garriott Papers collection. If someone there could either get an old tape reader working to read it in or — if truly dedicated — translate the punches by hand, the results would be fascinating to see.) We do have, however, a pretty good idea of how they operated: more primitive than, but remarkably similar to, the commercial games that would soon make Richard famous. In fact, Richard has often joked that he spent his first fifteen or years as a designer essentially making the same game over and over. The D&D games, like the Ultimas, show a top-down view of the player’s avatar and surroundings. They run not in real-time but in turns. The player interacts with the game via a set of commands which are each triggered by a single keypress: “N” to go north, “S” to view her character’s vital statistics, “A” to attack, space to do nothing that turn, etc. Because the games were running on a teletype, scenery and monsters could be represented only by ASCII characters; a “G” might represent a goblin, etc. And unlike the later games, the top-down view was maintained even in dungeons. This description reminds one strongly of the roguelikes of today, and of course of their ancestors on the PLATO system. It’s interesting that Richard came up with something so similar working independently. (Although on the other hand, how else was he likely to do it?) Playing the games would have required almost as much patience as writing them, as well as a willingness to burn through reams of paper, for the only option Richard had was to completely redraw the “screen” anew on paper each time the player made a move.

As his time in high school drew toward a close in the spring of 1979, Richard found himself facing a crisis of sorts: not only would he not be able to work on D&D anymore, but he faced losing his privileged access to a computer in general. He was naturally all too aware of the first generation of PCs that had now been on the market for almost two years, but so far his father had been resistant to the idea of buying one for the family, not seeing much future in the little toys as opposed to the hulking systems he was familiar with at NASA. In desperation, Richard turned on the reality distortion field and marched into Owen’s den with a proposal: if he could get the latest, most complicated iteration of D&D working and playable, without any bugs, Owen should buy him the Apple II system he’d been lusting over. Owen was perhaps more resistant to the field than most, being Richard’s father and all, but he did agree to go halfsies if Richard succeeded. Richard of course did just that (as Owen fully expected), and by the end of the summer his summer job earnings along with Owen’s contribution provided for him at last Apple’s just released II Plus model.

Compared to what he had been working with earlier, the Apple II, with its color display and graphics capabilities, its real-time responsiveness, and its ability to actually edit and tinker with a program in memory, must have seemed like a dream. Even the cassette drive he was initially stuck using for storage was an improvement over manually punching holes in paper tape. Richard had just begun exploring the capabilities of his new machine when it was time to head off to Austin, where he had enrolled in the Electrical Engineering program (the closest thing the university yet offered to Computer Science) at the University of Texas.

Richard’s early months at UT were, typically enough for a university freshman, somewhat difficult and unsettling. He had left safe suburban Clear Lake, where he had known everyone and been regarded as a quirky neighborhood star (a sort of Ferris Bueller without the angst), for the big, culturally diverse city of Austin and UT, where he was just one of tens of thousands of students filling huge lecture halls. When not returning home to Houston, something he did frequently, he uncharacteristically spent most of his time holed up alone in his dorm, tinkering on the Apple. It was not until his second semester that he stumbled upon a flyer for something called the “Society for Creative Anachronism,” a group we’ve encountered before in this blog who had a particularly large and active presence in eclectic Austin. He threw himself into SCA with characteristic passion. Soon Richard, who had dabbled in fencing before, was participating in medieval duels, camping outdoors, making and wearing his own armor, arguing chivalry and philosophy in taverns, and learning to shoot a crossbow. Deeming the “Lord British” monicker a bit audacious for a newcomer, he took the name “Shamino” (inspired by the Shimano-brand gears in his bicycle) inside the SCA, playing a rustic woodman-type to which the closest D&D analogue was probably the ranger class. The social world of the Austin SCA would play a huge role in Richard’s future games, with most of his closest friends there receiving a doppelganger inside the computer.

Meanwhile he continued to explore the Apple II. A simplistic but popular genre of games at this time were the maze games, in which the computer generates a maze and expects the player to find her way out of it — think Hunt the Wumpus, only graphical and without all the hazards to avoid. Most examples used the standard top-down view typical of the era, but Richard stumbled over one written by Silas Warner of Muse Software and called simply Escape! which dropped its player into a three-dimensional rendering of a maze, putting her right inside it. “As the maze dropped down into that low perspective, I immediately realized that with one equation, you could create a single-exit maze randomly. My world changed at that moment.”

[image:]

If you’d like to have a look at this game which so inspired Richard, you can download a copy on an Apple II disk image. After booting the disk on your emulator or real Apple II, type “RUN ESCAPE” at the prompt to begin.

Escape! inspired Richard to try to build the same effect into the dungeon areas of his D&D game, which he was now at work porting to the Apple II. Uncertain how to go about implementing it, he turned to his parents, who helped in ways typical of each. First, his mother explained to him how an artist uses perspective to create the illusion of depth; then, his father helped him devise a set of usable geometry and trigonometry equations he could use to translate his mother’s artistic intuition into computer code. Richard took to calling the Apple II version of his game D&D 28B, since it was essentially a port of the final teletype version to the Apple II, albeit with the addition of the 3D dungeons.

[image:]

Richard spent the summer of 1980 back in Houston with his family, working at the local ComputerLand store to earn some money. His boss there, John Mayer, noticed the game he was tinkering with, which by this time was getting popular amongst Richard’s friends and colleagues at the store. Mayer did Richard the favor of a lifetime when he suggested that he might want to consider packaging the game up and selling it right there in the shop. Richard therefore put together some packaging typical of the era, sticking a mimeographed printout of the in-game help text and some artwork sketched by his mother into a Ziploc bag along with the game disk itself. (He had by this time been able to purchase a disk drive for his Apple II.) He retitled the game Akalabeth, after one of his tabletop D&D worlds. Deeply skeptical about the whole enterprise, he made somewhere between 15 and 200 copies (sources differ wildly on the exact number), and spent the rest of the summer watching them slowly disappear from the ComputerLand software wall. In this halting fashion a storied career was born.

We’ll look at Akalabeth in some detail next time.

							
		
	
		
			
				Akalabeth

				December 18, 2011
			

Richard Garriott was a remarkable kid, but he was also a teenage dungeon master. So if we cringe a bit when Akalabeth opens with what seems a veritable caricature of teenage-dungeon-master speech which we can imagine issuing from some spotty kid in the lunch room crouching behind his Keep on the Borderlands adventure-module cover, we’ll also have to accept it as a product of its time and of its maker’s time of life.

[image:]

[image:]

[image:]

Just a couple of idle muses, issued in said spirit of acceptance:

Why do writers of medieval fantasy (including plenty who ought to know much better than our young Mr. Garriott) always turn to the Renaissance-era Shakespeare when they want to make their English diction sound all high-falutin’ and authentic-like? There is a fellow named Geoffrey Chaucer, you know…

And given Garriott’s documented dissatisfaction with the approach Crowther and Woods took in Adventure, is “Beyond Adventure” (or should I say “Beyond Adventure“?) a not-so-subtle dig at the competition?

While both of his parents and presumably others of course offered ideas and suggestions, Akalabeth is completely the work of Richard alone, the culmination of three years of tinkering, first on that teletype terminal in his high school and then on his shiny new Apple II Plus. The one exception comes in the form of title graphics, provided by a Houston neighborhood friend, Keith Zabalaoui, and sufficient to earn him a “Graphics” credit on the packaging.

[image:]

[image:]

After we have paged through Zabalaoui’s title graphics and the in-game instructions, the BASIC code of the game itself is loaded in and run. Everything that follows is implemented in a single BASIC program of some 22 K. First, we are told to “Type thy lucky number.” This number will serve as a seed to the random-number generator, determining almost everything that follows: the attribute scores we begin with, the layout of the wilderness and dungeon maps, etc. Thus, typing the same lucky number effectively guarantees us the same game, right down to the character we start with, and doing the exact same thing from there will literally result in the exact same game, for even “random” die rolls are ultimately controlled by this magic number. Generating a virtual world mathematically, on the fly as needs must rather than storing it as prepared data that simply needs to be retrieved from disk, was by no means unheard of in other early computer games that struggled with their hosts’ limited memories and disk capacities; most famously, Elite built its whole eight-galaxy universe dynamically from Fibonacci sequences. It is interesting that Garriott chose that approach here, however, rather than just using the Apple II’s perfectly adequate “real” random-number generator to present a truly random storyworld and gameplay.

Anyway, after making that most critical of decisions we next get to choose a difficulty level of between 1 and 10, which controls how tough the monsters we fight will be and how many quests we will need to complete to win the game. Next we see our character, consisting of a subset of the typical Dungeons and Dragons markers: hit points, strength, dexterity, stamina, wisdom, gold. We also can choose between two classes, fighter or mage. And so we end up in the inevitable shop, although this time without the chatty shopkeepers and haggling of Temple of Aphsai or Eamon.

[image:]

Like Temple of Aphsai, Akalabeth‘s equipment list is pretty basic, consisting of just the handful of generic items shown above, without even any possibility of finding special loot in the dungeons. Notably, however, here we have to deal with maintaining our food supply; our avatar will consume a little bit of food with every single turn, and if we run out he dies instantly. Starvation can be a real threat early in the game when gold is scarce, but soon enough we can afford hundreds of packages of food, and death by starvation becomes likely only through carelessness.

When the game proper begins, the basis of Garriott’s only half joking assertion that he spent the first 15 years of his career making the same game over and over really becomes clear. We are presented with a outdoor map, seen from an overhead perspective, which we navigate around using one-key commands. Any Ultima veteran should feel right at home, although unlike in the Ultimas, which eventually grew to use just about every key on the keyboard, we have just 10 or so options, most dealing simply with movement.

[image:]

Note that the display above is implemented using the Apple II’s unique hi-res graphics mode with four lines of regular text at the bottom for status messages — Wozniak’s gift that kept on giving for game programmers.

Also like in later Ultimas, our first real mission must be to find the castle of Garriott’s alter ego, Lord British. After calling us a “peasant” (tell us how you really feel, Richard), he will assign us the first of a series of “quests” to simply kill monsters of increasing difficulty. The number of these quests we must complete to win the game is controlled by the difficulty level we chose at the beginning.

[image:]

Isn’t that “a(n)” bit above priceless?

It’s in the dungeons scattered around the outdoor map that we find monsters to fight. These dungeons are the real meat of the game; we’ll spend most of our time exploring and mapping them and of course fighting their inhabitants, which grow increasingly fearsome as we descend to lower and lower levels. It’s also here that we find the game’s most obvious formal innovation, its use of a three-dimensional, first-person perspective that puts us right into the storyworld.

[image:]

[image:]

The use of such a perspective was not completely unprecedented even in 1980; there was of course that Escape game that had inspired Richard in the first place. And better remembered is Flight Simulator, the fruit of many years of 3D graphics experimentation by Bruce Artwick, which first appeared on the Apple II in 1979 or very early 1980. Garriott was, however, the first to implement it in a CRPG. As such, it would be very influential on a whole generation of dungeon-crawl games to follow, even as Garriott’s own Ultima series would ironically place increasingly less emphasis on its own dungeon delving in favor of creating ever richer above-ground worlds. And if we take Akalabeth‘s 3D dungeons out of the strict context of CRPG history, they stand near the top of a slippery slope that eventually led to Doom and, well, most of the hardcore games of today.

Still, Akalabeth isn’t generally accorded a whole of respect as a game qua game today. The CRPG Addict, for instance, calls it “more of a demonstration project than a game.” Certainly the garish artwork and teenage DM diction make it seem even more of an amateurish creation than most games from its early era. There’s some fitful stab at a milieu and a story, but it doesn’t really make any sense in light of the player’s goal to simply kill monsters and become a knight; after the introductory stuff, there are fewer total words in the game proper than there are in this paragraph. And there are things that feel just plain odd. For instance, Akalabeth has no concept of character levels; after exiting from a dungeon you are rewarded only in hit points, based on the quantity and quality of monsters you slew down below. The game has no concept of healing or of some theoretical maximum hit-point value; hit points are simply a collectable commodity, like gold. This system would persist even into Ultima I. As the CRPG Addict notes about that game, “it[‘s] the only game I know in which when you’re low on hit points, you’d better head straight for the nearest dungeon and find some monsters to fight!” Counter-intuitive as it is, fighting is literally the only way to recover hit points. (Which means, of course, that if you somehow manage to run your hit points too low without killing some pretty tough monsters, you’re effectively screwed.)

Yet there’s also a surprisingly smart design sensibility in evidence here in addition to the technical innovation of the 3D dungeons. These are aspects for which Akalabeth doesn’t get enough credit. In fact, I was surprised at how playable Akalabeth really is — much more playable than, say, the more conceptually ambitious Temple of Aphsai and its successors. Part of the problem others have had with it may be a failure of expectations. Akalabeth is not trying to give its player an extended, epic experience like its Ultima successors; it does not even have a save capability. It’s rather designed as a replayable exercise in dungeon delving. The difficulty system assures that the player is always challenged, and the magic-number system allows her to generate an almost infinite variety of maps while also being able to return to exactly that pesky setup that got her killed last time, should she so desire. Taken in that light, Akalabeth is a remarkably forward-thinking, even player-friendly design for its era. And while I won’t say that I was captured for days by it or anything, I genuinely had fun toying around with it in preparation for writing this entry, something I certainly can’t say about all of the historically important early games I’ve covered previously.

Other common criticisms provide an object lesson on the need to do this sort of software archaeology using as authentic a setup as possible. In 1997, Electronic Arts released The Ultima Collection, a collection of the first eight games in the series. They also included as a bonus a port of Akalabeth to MS-DOS, marking the first such ever done after the Apple II original. Most people who attempt to play Akalabeth today use this version, as it is more accessible than getting a real Apple II or Apple II emulator working. The problem is, this version actually appears to be less sophisticated than its antecedent. For instance, in the port every single dungeon on the map is a clone of every other; in the original, each dungeon is unique. Thus we are left with a false and unfavorable impression of Garriott’s original design.

Another common criticism is that the magic amulet effectively breaks the game. Some quick background: one of the items the player can buy or find in dungeons is a magic amulet, which, in addition to a few usefully predictable functions such as making magic ladders to move up or down in a dungeon, also has a sort of wildcard option. Most of the time the results of choosing this are bad in the extreme, such as being turned into a toad. Occasionally, however, the player will get turned into a lizard man, which might not sound so great but actually is: all of her stats instantly and permanently increase by 150%. The exploit, then, is to save the game — a feature the MS-DOS port, unlike the original, did include — and try your luck. If something bad happens, you simply restore and try again, until you become a lizard man. Do this a few times and you are effectively invincible. Fine — but we need to remember that players of the original didn’t have the comfort of a save command, or even an emulator’s saved state. So trying this would have been a truly desperate roll of the dice, probably undertaken when the player had nothing left to lose. Seen the way a player in 1980 would have seen it, it’s not a game breaker at all, but a clever touch that just might once in a blue moon provide a miracle to the desperate.

So, taken all in all, it’s not hard to see why the software publisher California Pacific came calling after Richard, wanting to give his game a national release. I’ll get into that story next time.

If you’d like to try out the original Akalabeth for yourself in the meanwhile, here’s an Apple II disk image for ya.

							
		
	
		
			
				California Pacific

				December 20, 2011
			

[image:]

There are two conflicting stories about how the game that Richard Garriott sold in that Houston-area ComputerLand store made it to the West Coast offices of California Pacific, one of the most prolific and prominent of early Apple II software publishers. One says that the man who had prompted Garriott to start selling Akalabeth in the first place, ComputerLand manager John Mayer, did him a second huge favor by sending a copy of the game to CP for their consideration. The other says that the game got to CP’s offices within a few weeks of appearing in that ComputerLand via software-piracy channels. The latter story is the one Richard himself tells today, and, for what it’s worth, the one I tend to subscribe to. Perhaps the former was invented closer to the events themselves, to avoid anyone having to explain just how pirated software made its way into CP’s offices. However Akalabeth came to their attention, CP’s founder, Al Remmers, called Richard before the summer of 1980 was out, offering to fly him to Davis, California, to discuss a publication contract that would give Akalabeth nationwide distribution.

In those days game designers and programmers (almost always embodied in the same person) who could push the envelope conceptually and technically were worshiped within the still small but rapidly growing community of Apple II users. Amongst the most prominent of these was the star in CP’s stable, Bill Budge, who made his name during 1979 and 1980 with a series of frenetic action games considered remarkable for their graphics. Garriott, like any engaged Apple II user, knew Budge’s work well, so much so that his first reaction on getting the call was amazement that his work could be considered worthy by the publisher of the great Budge. He made the trip to California with nervous parents in tow, who wanted to be sure their son would not be ripped off by the fast-talking Remmers. They found no grounds for concern, and the deal was quickly done.

It was Remmers, who could show a keen promotional instinct when the mood struck him, that suggested they credit the game not to Richard Garriott but only to his in-game alter ego, Lord British, starting a tradition that would persist for many years. Upon Akalabeth‘s CP release, probably in late October or November of 1980, Remmers orchestrated a contest with Softalk magazine, in which the magazine would publish a series of cryptic clues from which readers were expected to guess Lord British’s real identity:

Lord British is not a member of the Silicon Gulch.

Lord British attends the largest university in the state of friendship.

He and his home city are closely related to present and future blastoffs.

He works at a store on the King’s Highway near the city of the clear lake in the land of computers.

ComputerLand knows him as the Son of Skylab I and if you call you’ll know him too.

No one who wasn’t already a Richard Garriott acquaintance managed to decipher the clues, and the contest fizzled out rather anticlimactically with a series of consolation prizes for things like most imaginative solution methodology in Softalk‘s May, 1981, issue. The following issue featured a full profile of Garriott that revealed all at last. Still, yet another thing that would follow Garriott throughout his career, his larger-than-life persona in the computer press as Lord British, was now in place, and once again largely accidentally, at the behest of others. Truly the young Richard Garriott led a charmed life.

While Akalabeth and Garriott did receive considerable press thanks to Remmers’s cozy relationship with Softalk, the question of its actual sales is one I can’t quite consider settled. Garriot himself recently reiterated in this blog’s comments a claim he has often made, that Akalabeth sold some 30,000 copies and netted for its author at least $150,000. There are however, several pieces of admittedly circumstantial evidence that do tend to pull against this a bit.

As a point of comparison, we might take a game I discussed earlier in this blog, On-Line Systems’s The Wizard and the Princess. According to official histories from Sierra (the company that On-Line Systems morphed into), this game eventually sold 60,000 copies. However, in the September/October, 1982, issue of Computer Gaming World, we find a list of the top sellers of various game publishers as of June 30, 1982. There, The Wizard and the Princess is listed as having sold just 25,000 copies by that date, almost two years after its release. That’s surprising, but not untenable; the microcomputer industry was growing so quickly in the early 1980s that sales even of older games could increase month by month and even year by year simply because there were so many new consumers always coming online to buy them. So, let’s run with The Wizard and the Princess as a 25,000-copy seller through mid-1982. As I noted in an earlier post, The Wizard and the Princess was a perennial on Softalk‘s best-seller top ten for well over a year after its release, spending much of that time in the top five. Akalabeth, by contrast, made just two appearances in the top 30, appearing in the January, 1981, list at number 23 and then disappearing for two months, only to bubble up one last time at number 26 in the April issue. Given that Akalabeth would permanently disappear from shelves in 1982 for reasons we’ll get to down the road a bit, and thus would not be able to benefit from the long tail of new consumers that presumably benefited The Wizard and the Princess, this is hard to reconcile with the idea that Akalabeth outsold The Wizard and the Princess by 5000 copies between the former’s late 1980 release and mid-1982.

On that same mid-1982 Computer Gaming World list, California Pacific claims Garriott’s next game, Ultima, as its own top seller, with sales of — and this is interesting — just 20,000 copies. And then there is a question that’s been raised in vintage-software-collector circles: if 30,000 copies of Akalabeth were sold, where are they? The California Pacific Akalabeth (let’s not even talk about the CompuerLand version) remains exceedingly rare, much more so than other titles of similar vintage which allegedly sold in much smaller numbers.

Now, it’s very true that objections could be raised to many of these points. Softalk‘s sales listings, for instance, were generated by surveying “Apple-franchised retail stores representing approximately 15 percent of all sales of Apple and Apple-related products [who] volunteered to participate in this poll.” Notably, mail-order sales were not considered at all. Since it deals only in ratios, not absolute numbers, Softalk‘s editors assumed the poll to be a valid reflection of the Apple II software market in general, but perhaps this assumption did not entirely hold true. Even the Computer Gaming World list was generated by simply asking the various publishers. It’s entirely possible that, due to conscious deception, confusion that grew from an admittedly rather poorly worded premise, or simple mistakes, some of these numbers are inaccurate — perhaps dramatically so. And I do want to emphasize again that, if the 30,000-copy figure is not correct, I certainly don’t attribute the confusion to deliberate deception on Garriott’s part — merely to 30-year-old events and poor record keeping in a software industry that, as we’ll see all too clearly when we get to later events in Garriott’s career, was not exactly a model of responsible business practice.

Whatever its sales figures, we can feel confident that Akalabeth generated a nice chunk of money for its starving-student creator. Garriott has characterized this time in the software industry as the “free money era,” during which even programs that frankly weren’t very good could generate a lot of money for their creators — such was the demand for new software, any software among new minted Apple II zealots. CP sold Akalabeth for $35 (up from the $20 Garriott had charged at ComputerLand). Accounting for inflation, this figure puts it right in line and then some with a hot new AAA console title of today. CP was known for offering a very generous royalty rate to its developers, often as high as 50%. Garriott presumably gave a little something to his title-screen artist Keith Zabalaoui, but the rest was all his. Even if Akalabeth didn’t sell anywhere near 30,000 copies, that adds up to one hell of a windfall for a university student. (If Garriott earned $15 per copy and Akalabeth sold even 10,000 copies, there’s your $150,000 right there.) As Garriott recently said in a lengthy interview by Warren Spector, it’s been “all downhill from there” as far as return on investment in the computer-game industry. Indeed, I find the idea that it was for at least a year or two possible to make $150,000 from a 22 K BASIC program you wrote all by yourself simultaneously exciting and vaguely horrifying. Alas, I was born ten years too late…

Even before he returned to Austin for another year of classes and SCA events, Garriott began working on another game. This one would be more ambitious than Akalabeth, his first creation conceived and written entirely on the Apple II and his first to be consciously crafted for commercial sale. We’ll get to that soon, but next I want to switch topics yet again to look at the origins of the company many of you who read this blog love more than other.

							
		
	
		
			
				The Roots of Infocom

				January 1, 2012
			

[image:]

In November of 1980 Personal Software began running the advertisement above in computer magazines, plugging a new game available then on the TRS-80 and a few months later on the Apple II. It’s not exactly a masterpiece of marketing; its garish, amateurish artwork is defensible only in being pretty typical of the era, and the text is remarkably adept at elucidating absolutely nothing that might make Zork stand out from its text-adventure peers. A jaded adventurer might be excused for turning the page on Zork‘s “mazes [that] confound your quest” and “20 treasures” needing to be returned to the “Trophy Case.” Even Scott Adams, not exactly a champion of formal experimentation, had after all seen fit to move on at least from time to time from simplistic fantasy treasure hunts, and Zork didn’t even offer the pretty pictures of On-Line Systems’s otherwise punishing-almost-to-the-point-of-unplayability early games.

In fact, though, Zork represented a major breakthrough in the text-adventure genre — or maybe I should say a whole collection of breakthroughs, from its parser that actually displayed some inkling of English usage in lieu of simplistic pattern matching to the in-game text that for the first time felt crafted by authors who actually cared about the quality of their prose and didn’t find proper grammar and spelling a needless distraction. In one of my favorite parts of Jason Scott’s Get Lamp documentary, several interviewees muse about just how truly remarkable Zork was in the computing world of 1980-81. The consensus is that it was, for a brief window of time, the most impressive single disk you could pull out to demonstrate what your new TRS-80 or Apple II was capable of.

Zork was playing in a whole different league from any other adventure game, a fact that’s not entirely surprising given its pedigree. You’d never guess it from the advertisement above, but Zork grew out of the most storied area of the most important university in computer-science history: MIT. In fact, Zork‘s pedigree is so impressive that it’s hard to know where to begin and harder to know where to end in describing it, hard to avoid getting sucked into an unending computer-science version of “Six Degrees of Kevin Bacon.” To keep things manageable I’ll try as much as I can to restrict myself to people directly involved with Zork or Infocom, the company that developed it. So, let’s begin with Joseph Carl Robnett Licklider, a fellow who admittedly had more of a tangential than direct role in Infocom’s history but who does serve as an illustration of the kind of rarified computer-science air Infocom was breathing.

Born in 1915 in St. Louis, Licklider was a psychologist by trade, but had just the sort of restless intellect that Joseph Weizenbaum would lament the (perceived) loss of in a later generation of scholars at MIT. He received a triple BA degree in physics, mathematics, and psychology from St. Louis’s Washington University at age 22, having also flirted with chemistry and fine arts along the way. He settled down a bit to concentrate on psychology for his MA and PhD, but remained consistently interested in connecting the “soft” science of psychology with the “hard” sciences and with technology. And so, when researching the psychological component of hearing, he learned more about the physical design of the human and animal auditory nervous systems than do many medical specialists. (He once described it as “the product of a superb architect and a sloppy workman.”) During World War II, research into the effects of high-altitude on bomber crews led him to get equally involved with the radio technology they used to communicate with one another and with other airplanes.

After stints at various universities, Licklider came to MIT in 1950, initially to continue his researches into acoustics and hearing. The following year, however, the military-industrial complex came calling on MIT to help create an early-warning network for the Soviet bombers they envisioned dropping down on America from over the Arctic Circle. Licklider joined the resulting affiliated institution, Lincoln Laboratory, as head of its human-engineering group, and played a role in the creation of the Semi-Automatic Ground Environment (SAGE), by far the most ambitious application of computer technology conceived up to that point and, for that matter, for many years afterward. Created by MIT’s Lincoln Lab with IBM and other partners, the heart of SAGE was a collection of IBM AN/FSQ-7 mainframes, physically the largest computers ever built (a record that they look likely to hold forever). The system compiled data from many radar stations to allow operators to track a theoretical incoming strike in real time. They could scramble and guide American aircraft to intercept the bombers, enjoying a bird’s eye view of the resulting battle. Later versions of SAGE even allowed them to temporarily take over control of friendly aircraft, guiding them to the interception point via a link to their autopilot systems. SAGE remained in operation from 1959 until 1983, cost more than the Manhattan Project that had opened this whole can of nuclear worms in the first place, and was responsible for huge advances in computer science, particularly in the areas of networking and interactive time-sharing. (On the other hand, considering that the nuclear-bomber threat SAGE had been designed to counter had been largely superseded by the ICBM threat by the time it went operational, its military usefulness is debatable at best.)

During the 1950s most people, including even many of the engineers and early programmers who worked on them, saw computers as essentially huge calculators. You fed in some numbers at one end and got some others out at the other, whether they be the correct trajectory settings for a piece of artillery to hit some target or other or the current balances of a million bank customers. As he watched early SAGE testers track simulated threats in real time, however, Licklider was inspired to a radical new vision of computing, in which human and computer would actively work together, interactively, to solve problems, generate ideas, perhaps just have fun. He took these ideas with him when he left the nascent SAGE project in 1953 to float around MIT in various roles, all the while drifting slowly away from traditional psychology and toward computer science. In 1957 he became a full-time computer scientist when he (temporarily, as it turned out) left MIT for the consulting firm Bolt Beranek and Newman, a company that would play a huge role in the development of computer networking and what we’ve come to know as the Internet. (Loyal readers of this blog may also recall that BBN is also where Will Crowther was employed when he created the original version of Adventure as a footnote to writing the code run by the world’s first computerized network routers.)

Licklider, who insisted that everyone, even his undergraduate students, just call him “Lick,” was as smart as he was unpretentious. Speaking in a soft Missouri drawl that could obscure the genius of some of his ideas, he never seemed to think about personal credit or careerism, and possessed not an ounce of guile. When a more personally ambitious colleague stole one of his ideas, Lick would just shrug it off, saying, “It doesn’t matter who gets the credit; it matters that it gets done.” Everyone loved the guy. Much of his work may have been funded by the realpolitik of the military-industrial complex, but Lick was by temperment an idealist. He became convinced that computers could mold a better, more just society. In it, humans would be free to create and to explore their own potential in partnership with the computer, which would take on all the drudgery and rote work. In a surprising prefiguring of the World Wide Web, he imagined a world of “home computer consoles” connected to a larger network that would bring the world into the home — interactively, unlike the passive, corporate-controlled medium of television. He spelled out all of these ideas carefully in a 1960 paper, “Man-Computer Symbiosis,” staking his claim as one of a long line of computing utopianists that would play a big role in the development of more common-man friendly technologies like the BASIC programming language and eventually of the microcomputer itself.

In 1958, the U.S. government formed the Advanced Research Projects Agency in response to alleged Soviet scientific and technological superiority in the wake of their launch of Sputnik, the world’s first satellite, the previous year. ARPA was intended as something of a “blue-sky” endeavor, pulling together scientists and engineers to research ideas and technology that might not be immediately applicable to ongoing military programs, but that might just prove to be in the future. It became Lick’s next stop after BBN: in 1962 he took over as head of their “Information Processing Techniques Office.” He remained at ARPA for just two years, but is credited by many with shifting the agency’s thinking dramatically. Previously ARPA had focused on monolithic mainframes operating as giant batch-processing “answer machines.” From Where Wizards Stay Up Late:

The computer would be fed intelligence information from a variety of human sources, such as hearsay from cocktail parties or observations of a May Day parade, and try to develop a best-guess scenario on what the Soviets might be up to. “The idea was that you take this powerful computer and feed it all this qualitative information, such as ‘The air force chief drank two martinis,’ or ‘Khrushchev isn’t reading Pravda on Mondays,” recalled Ruina. “And the computer would play Sherlock Holmes and conclude that the Russians must be building an MX-72 missile or something like that.”

“Asinine kinds of things” like this were the thrust of much thinking about computers in those days, including plenty in prestigious universities such as MIT. Lick, however, shifted ARPANET in a more manageable and achievable direction, toward networks of computers running interactive applications in partnership with humans — leave the facts and figures to the computer, and leave the conclusions and the decision-making to the humans. This shift led to the creation of the ARPANET later in the decade. And the ARPANET, as everyone knows by now, eventually turned into the Internet. (Whatever else you can say about the Cold War, it brought about some huge advances in computing.) The humanistic vision of computing that Lick championed, meanwhile, remains viable and compelling today as we continue to wait for the strong AI proponents to produce a HAL.

Lick returned to MIT in 1968, this time as the director of the legendary Project MAC. Formed in 1963 to conduct research for ARPA, MAC stood for either (depending on whom you talked to) Multiple Access Computing or Machine Aided Cognition. Those two names also define the focus of its early research: into time-shared systems that let multiple users share resources and use interactive programs on a single machine; and into artificial intelligence, under the guidance of the two most famous AI proponents of all, John McCarthy (inventor of the term itself) and Marvin Minsky. I could write a few (dozen?) more posts on the careers and ideas of these men, fascinating, problematic, and sometimes disturbing as they are. I could say the same about many other early computing luminaries at MIT with whom Lick came into close contact, such Ivan Sutherland, inventor of the first paint program and, well, pretty much the whole field of computer-graphics research as well as the successor to his position at ARPA. Instead, I’ll just point you (yet again) to Steven Levy’s Hackers for an accessible if necessarily incomplete description of the intellectual ferment at 1960s MIT, and to Where Wizards Stay Up Late by Matthew Lyon and Katie Hafner for more on Lick’s early career as well as BBN, MIT, and our old friend Will Crowther.

Project MAC split into two in 1970, becoming the MIT AI Laboratory and the Laboratory for Computer Science (LCS). Lick stayed with the latter as a sort of grandfather figure to a new generation of young hackers that gradually replaced the old guard described in Levy’s book as the 1970s wore on. His was a shrewd mind always ready to take up their ideas, and one who, thanks to his network of connections in the government and industry, could always get funding for said ideas.

LCS consisted of a number of smaller working groups, one of which was known as the Dynamic Modeling Group. It’s oddly difficult to pin any of these groups down to a single purpose. Indeed, it’s not really possible to do so even for the AI Lab and LCS themselves; plenty of research that could be considered AI work happened at LCS, and plenty that did not comfortably fit under that umbrella took place at the AI Lab. (For instance, Richard Stallman developed the ultimate hacker text editor, EMACS, at the AI Lab — a worthy project certainly but hardly one that had much to with artificial intelligence.) Groups and the individuals within them were given tremendous freedom to hack on any justifiable projects that interested them (with the un-justifiable of course being left for after hours), a big factor in LCS and the AI Lab’s becoming such beloved homes for hackers. Indeed, many put off graduating or ultimately didn’t bother at all, so intellectually fertile was the atmosphere inside MIT in contrast to what they might find in any “proper” career track in private industry.

[image:]

The director of the Dynamic Modeling Group was a fellow named Albert (Al) Vezza; he also served as an assistant director of LCS as a whole. And here we have to be a little bit careful. If you know something about Infocom’s history already, you probably recognize Vezza as the uptight corporate heavy of the story, the guy who couldn’t see the magic in the new medium of interactive fiction that the company was pursuing, who insisted on trivializing the game’s division work as a mere source of funding for a “serious” business application, and who eventually drove the company to ruin with his misplaced priorities. Certainly there’s no apparent love lost between the other Infocom alumni and Vezza. An interview with Mike Dornbrook for an MIT student project researching Infocom’s history revealed the following picture of Vezza at MIT:

Where Licklider was charismatic and affectionately called “Lick” by his students, Vezza rarely spoke to LCS members and often made a beeline from the elevator to his office in the morning, shut the door, and never saw anyone. Some people at LCS were unhappy with his managerial style, saying that he was unfriendly and “never talked to people unless he had to, even people who worked in the Lab.”

On the other hand, Lyon and Hafner have this to say:

Vezza always made a good impression. He was sociable and impeccably articulate; he had a keen scientific mind and first-rate administrative instincts.

Whatever his failings, Vezza was much more than an unimaginative empty suit. He in fact had a long and distinguished career which he largely spent furthering some of the ideas first proposed by Lick himself; he appears in Lyon and Hafner’s book, for instance, because he was instrumental in organizing the first public demonstration of the nascent ARPANET’s capabilities. Even after the Infocom years, his was an important voice on the World Wide Web Consortium that defined many of the standards that still guide the Internet today. Certainly it’s a disservice to Vezza that his Wikipedia page consists entirely of his rather inglorious tenure at Infocom, a time he probably considers little more than a disagreeable career footnote. That footnote is of course the main thing we’re interested in, but perhaps we can settle for now on a picture of a man with more of the administrator or bureaucrat than the hacker in him and who was more of a pragmatist than an idealist — and one who had some trouble relating to his charges as a consequence.

Many of those charges had names that Infocom fans would come to know well: Dave Lebling, Marc Blank, Stu Galley, Joel Berez, Tim Anderson, etc., etc. Like Lick, many of these folks came to hacking from unexpected places. Lebling, for instance, obtained a degree in political science before getting sucked into LCS, while Blank commuted back and forth between Boston and New York, where he somehow managed to complete medical school even as he hacked like mad at MIT. One thing, however, most certainly held true of everyone: they were good. LCS didn’t suffer fools gladly — or at all.

One of the first projects of the DMG was to create a new programming language for their own projects, which they named with typical hacker cheekiness “Muddle.” Muddle soon became MDL (MIT Design Language) in response to someone (Vezza?) not so enamoured with the DMG’s humor. It was essentially an improved version of an older programming language developed at MIT by John McCarthy, one which was (and remains to this day) the favorite of AI researchers: LISP.

With MDL on hand, the DMG took on a variety of projects, individually or cooperatively. Some of these had real military applications to satisfy the folks who were ultimately funding all of these shenanigans; Lebling, for instance, spent quite some time on computerized Morse-Code recognition systems. But there were plenty of games, too, in some of which Lebling was also a participant, including the best remembered of them all, Maze. Maze ran over a network, with up to 8 Imlac PDS-1s, very simple minicomputers with primitive graphical capabilities, serving as “clients” connected to a single DEC PDP-10 “server.” Players on the PDS-1s could navigate around a shared environment and shoot at each other — the ancestor of modern games like Counterstrike. Maze became a huge hit, and a real problem for administrative types like Vezza; not only did a full 8-player game stretch the PDP-10 server to the limit, but it had a tendency to eventually crash entirely this machine that others needed for “real” work. Vezza demanded again and again that it be removed from the systems, but trying to herd the cats at DMG was pretty much a lost cause. Amongst other “fun” projects, Lebling also created a trivia game which allowed users on the ARPANET to submit new questions, leading to an eventual database of thousands.

And then, in the spring of 1977, Adventure arrived at MIT. Like computer-science departments all over the country, work there essentially came to a standstill while everyone tried to solve it; the folks at DMG finally got the “last lousy point” with the aid of a debugging tool. And with that accomplished, they began, like many other hackers in many other places, to think about how they could make a better Adventure. DMG, however, had some tools to hand that would make them almost uniquely suited to the task.

							
		
	
		
			
				Zork on the PDP-10

				January 3, 2012
			

One distinguishing trait of hackers is the way they never see any program as completely, definitively done; there are always additions to be made, rough edges to be smoothed. Certainly Adventure, impressive as it was, left plenty of room for improvement. On top of all that, though, one also has to consider that Adventure came to MIT from Don Woods of Stanford’s AI Lab, perhaps the only computer-science program in the country with a stature remotely comparable to that of MIT. MIT students are fiercely proud of their alma mater. If Stanford had done the adventure game first, MIT’s Dynamic Modeling Group could still do it better. And it didn’t hurt that the heritage of Project MAC and the Laboratory for Computer Science, not to mention the DMG itself, gifted them with quite some tools to bring to bear on the problem.

Adventure had been implemented in FORTRAN, a language with no particular suitability for the creation of a text adventure. Indeed, FORTRAN wasn’t even natively designed to handle variable-length strings, leaving Crowther and Woods to kludge their way around this problem as they did plenty of others. Both were of course very talented programmers, and so they made the best of it. Still, the hackers at DMG, whose opinion of FORTRAN was elevated about half a step above their opinion of BASIC, couldn’t wait to design their own adventure game using their own pet language, MDL. Not only did MDL, as a language at least partially designed for AI research, boast comparatively robust string-handling capabilities, but it also offered the ability to define complex new data types suitable to a specific task at hand and even to tie pieces of code right into those structures. Let me try to explain what made that so important.

We’ll start with the opening room of Zork, the game the DMG eventually produced in response to Adventure. Its description reads like this to the player:

West of House

This is an open field west of a white house, with a boarded front door.

There is a small mailbox here.

A rubber mat saying 'Welcome to Zork!' lies by the door.

Here’s the original MDL source that describes this room:

<ROOM "WHOUS"

"This is an open field west of a white house, with a boarded front door."

"West of House"

<EXIT "NORTH" "NHOUS" "SOUTH" "SHOUS" "WEST" "FORE1"

"EAST" #NEXIT "The door is locked, and there is evidently no key.">

(<GET-OBJ "FDOOR"> <GET-OBJ "MAILB"> <GET-OBJ "MAT">)

<>

<+ ,RLANDBIT ,RLIGHTBIT ,RNWALLBIT ,RSACREDBIT>

(RGLOBAL ,HOUSEBIT)><

Just about everything the program needs to know about this room is nicely encapsulated here. Let’s step through it line by line. The “ROOM” tag at the beginning defines this structure as a room, with the shorthand name “WHOUS.” The following line of text is the room description the player sees when entering for the first time, or typing “LOOK.” “West of House” is the full name of the room, the one which appears as the header to the room description and in the status line at the top of the screen whenever the player is in this room. Next we have a list of exits from the room: going north will take the player to “North of House,” south to “South of House”, west to one of several rooms that make up the “Forest.” Trying to go east will give a special failure message, saying that the player doesn’t have a key for the door, rather than a generic “You can’t go that way.” Next we have the items in the room as the game begins: the front door, the mailbox, and the welcome mat. Then a series of flags define some additional properties of the room: that it is on land rather than overrun with water; that it has light even if the player does not have a lit lantern with her; that (being outdoors) it has no walls; that it is “sacred,” meaning that the thief, a character who wanders about annoying the player in a manner akin to the dwarfs and the pirate in Adventure, cannot come here. And finally the last line defines this room as being associated with the white house, or if you will a part of the house “region” of the game’s geography.

Each item and character in the game has a similar definition block explaining most of what the game needs to know about it. Notably, even the special abilities or properties of these are defined as part of them, via links to special sections of code crafted just for them. Thus, once the scaffolding of utility code that enables all of this was created (no trivial task, of course), adding on to Zork largely involved simply defining more rooms, items, and characters, with no need to dive again into the engine that enables everything; only special capabilities of items and characters needed to be coded from scratch and linked into their hosts. In forming their world from a collection of integrated “objects,” the hackers at DMG were pushing almost accidentally toward a new programming paradigm that would first become a hot topic in computer science years later: object-oriented programming, in which programs are not divided rigorously into code that executes and the data it manipulates, but are rather built out of the interaction of semi-autonomous objects encapsulating their own code and data. Regarded for a time as the ideal solution to pretty much everything (possibly including the attainment of world peace), there is today a (probably justified) push-back in some quarters against the one-size-fits-all imposition of OOP theory found in some languages, such as Java. Be that as it may, OOP is pretty much ideal for crafting a text adventure. To show what I mean, let’s look at the alternative, as illustrated by the very non-OOP FORTRAN Adventure.

Each room in Adventure is given a number, from 1 (the starting location outside the small brick building, naturally) to 140 (a dead end location in the maze, less naturally). To find the long description of a room, shown when the player enters for the first time or LOOKs, the program digs through the first table in an external data file, matching the room number to the entries:

1

1	YOU ARE STANDING AT THE END OF A ROAD BEFORE A SMALL BRICK BUILDING.

1	AROUND YOU IS A FOREST. A SMALL STREAM FLOWS OUT OF THE BUILDING AND

1	DOWN A GULLY.

Another table defines the short description shown upon entering an already visited room:

1	YOU'RE AT END OF ROAD AGAIN.

And now it gets really fun. Another table tells us what lies in what direction:

1	2	2	44	29

1	3	3	12	19	43

1	4	5	13	14	46	30

1	5	6	45	43

1	8	63

The first line above tells us that when in room 1 we can go to room 2 by typing any of three entries from yet another table, this time of keywords: “ROAD or HILL” (entries 2); “WEST” or “W” (entries 44); or “UPWAR” (pattern matching is done on just the first 5 characters of each word), “UP,” “ABOVE,” or “ASCEN” (entries 29). Definitions for items are similarly scattered over multiple tables within the data file. Thus, while Adventure does make some attempt to abstract its game engine from the data that makes up its world (placing the latter as much as possible within the external data file), modifying the world is a fiddly, error-prone process of editing multiple cryptic tables. Early adventuring engines created on microcomputers, such as those of Scott Adams, work in a similar fashion. Although it is of course possible to develop tools to ease the burden of hand-editing data files, the MDL Zork system is flexible and programmable in a way that these systems are not; with no ability to build code right into the world’s objects, as it were, crafting non-standard objects in Adventure or a Scott Adams game generally required hacking on the engine code itself, an ugly proposition.

So, MDL was just better for writing an adventure game, capable of cleanly representing a huge world in a readable, maintainable way. It was almost as if MDL had been designed for the purpose. Indeed, if you’ve used a more modern IF programming language like Inform 6, you might be surprised at how little the their approach to defining a world has changed since the days of MDL Zork. (Inform 7, one of the latest and greatest tools for IF development, does drift away from the OOP model in favor of a more human-readable — even “literary” — rules-based approach. Suffice to say that the merits and drawbacks of the Inform 7 approach is a subject too complex to go into here. Maybe in 20 years, when the Digital Antiquarian finally makes it to 2006…)

And the DMG hackers had still another ace up their sleeve.

MIT had a large body of research into natural-language understanding on the computer, stretching back at least as far as Joseph Weizenbaum and his 1966 ELIZA system. If that program was ultimately little more than an elaborate parlor trick, it did inspire other, more rigorous attempts at getting a program to parse plain English. Most famously, between 1968 and 1970 Terry Winograd developed a program he called SHRDLU, which simulated a model world made up of blocks. The user could ask the program to manipulate this world, shifting blocks from place to place, placing them on top of each other, and so on, all by typing in her requests as simple imperative English sentences. She could even ask the computer simple questions, about what was placed where, etc. Rather overvalued in its time (as so much AI research tended to be) as a step on the road to HAL, SHRDLU nevertheless showed that when held within a very restricted domain it is very possible for a program to parse and genuinely “understand” at least a reasonable subset of English. Working from the tradition of SHRDLU, the DMG hackers crafted an adventure-game parser that was arguably the first to be truly worthy of the term. While Adventure got by with simple pattern matching (as betrayed by the fact that “LAMP GET” works as well as “GET LAMP”), Zork would have a real understanding not only of verb and direct object, but also of preposition, indirect object, conjunction, punctuation, even article. Helping the process along was once again MDL, which as a language designed with AI research in mind had superb string-manipulation capabilities. The parser they ended up with is a remarkable creation indeed, one that would stand alone for several years — then as now an eternity in the world of computer science. But now we’re getting ahead of ourselves.

The road to Zork began in late May of 1977, when Dave Lebling put together a very simple parser and game engine quite similar to Adventure‘s, from which Marc Blank and Tim Anderson built their first four-room game as a sort of proof of concept. At this point Lebling went on vacation for two weeks, while Blank, Anderson, and Bruce Daniels hacked like crazy, crafting the basic structure of Zork as we know it to this day. The name itself was a nonsense word floating around MIT that one might use in place of something, shall we say, stronger in stressful situation: “Zork the bloody thing!” when a piece of code just wouldn’t work correctly, etc. The file holding the game-in-progress got named “Zork” as a sort of placeholder until someone came up with something better. Every programmer tends to have a few names like this which she uses for programs, variables, functions, etc., when she’s just experimenting and can’t be bothered to come up with something better. (My own go-to placeholder, for reasons too embarrassing and idiosyncratic to elaborate on here, has been “fuzzy” for the last 25 years.) In the case of Zork, though, a proper name was slow in coming. And so Zork the game remained for the first six months of its existence.

By the time Lebling returned from that vacation to resume working on the game, a solid foundation was in place. Everything about the design was modular, meaning not only that (as demonstrated above) it was easy to add more rooms, items, and puzzles, but also that parts of the underlying technology could be easily removed, improved, and inserted again. Most notably, the parser gradually progressed from a two-word job “almost as smart as Adventure‘s” to the state-of-the-art creation it eventually became, mostly thanks to the efforts of Blank, who obsessed over it to the tune of “40 or 50” iterations.

In later years Infocom would develop an elaborate if comedic history and mythology around Zork and its “Great Underground Empire,” but in these early days they were interested in the game’s world only as a setting for cool if ridiculously disparate scenery and, of course, puzzles to solve, very much in the tradition of Don Woods’s approach to Adventure. In fact, Zork‘s world paid homage to Adventure almost to the point of initially seeming like a remake. Like in Adventure, you start above ground next to a small house; like in Adventure, there is a small wilderness area to explore, but the real meat of the game takes place underground; like in Adventure, your goal is to collect treasures and return them to the house that serves as your base of operations; etc., etc. Only deeper in the game did Zork diverge and really take on its own character, with imaginative locations of its own and much more intricate puzzles enabled by that magnificent parser. Of course, these parts were also crafted later, when the development team was more experienced and when said parser was much better. I’ll be having a detailed look at Zork the game in its microcomputer rather than its PDP-10 incarnation, but if you’re interested in learning more about this original shaggy-dog implementation I’d encourage you to have a look at Jason Dyer’s detailed play-through.

Like Adventure, Zork ran on a DEC PDP-10. Unlike Adventure, however, it ran under the operating system which also hosted the MDL environment, the Incompatible Timesharing System (named with a bit of hacker humor as a sarcastic response to an earlier Compatible Timesharing System; once again see — sorry to keep beating this drum — Levy’s Hackers for a great account of its origins). ITS was largely unique to MIT, the institution that had developed it. There was something very odd about it: in extravagant (some would say foolhardy) tribute to the hacker tradition of total openness and transparency, it had no passwords — in fact, no security whatsoever. Absolutely anyone could log on and do what they pleased. This led to a substantial community of what the MIT hackers came to call “net randoms,” people with nothing to do with MIT but who were blessed with access to an ARPANET-connected computer somewhere who stopped by and rummaged through the systems just to see what all those crazy MIT hackers were up to. DMG’s machine had collected quite a community of randoms thanks to the earlier Trivia game. It didn’t take them long to find Zork, even though it was never officially announced anywhere, and get to work adventuring. Soon the game-in-progress was developing a reputation across the ARPANET. For the benefit of this community of players the development team started to place a copy of U.S. News and Dungeon Report in one of the first rooms, which detailed the latest changes and additions to this virtual world they were exploring. The randoms as well as other, more “legitimate” MIT-based users (John McCarthy, the father of AI, among them) served as a sort of extended beta-testing team; the implementers could see what they tried to do, not to mention what they complained about, and adjust their game to accommodate them. Many of the parser improvements in particular were undoubtedly driven by just this process; anyone who’s ever put a text adventure through beta testing knows that you just can’t predict the myriad ways people will try to say things.

Still, Zork‘s growing popularity raised obvious concerns about overloading the DMG’s PDP-10 system — which was funded by the Defense Department and theoretically needed for winning the Cold War, after all — with all of these gamers. Meanwhile, others were asking for their own copies of the game, to install on other machines. Although developed and used primarily under ITS, there was as it happened a version of the MDL environment that ran on yet another PDP-10 operating system, TOPS-20, first released by DEC in 1976 and positioned as a more advanced, user-friendly version of TOPS-10. Unlike ITS, TOPS-20 was widely used outside of MIT. The DMG hackers therefore modified Zork as necessary to run on TOPS-20 and began distributing it to any administrator who requested a copy. By that fall, machines all over the country were hosting Zork, and the maintainers had even set up an electronic mailing list to keep administrators aware of expansions and improvements.

The DMG hackers were generous, but not quite so generous as Don Woods had been with Adventure. They distributed Zork only as encrypted files that were runnable in an MDL environment but were not readable (and modifiable) as source code. They even went so far as to patch their famously insecure ITS development system, adding security to just the directory that stored the source. Hackers, however, won’t be denied, and soon one from DEC itself had penetrated the veil. From Infocom’s own official “History of Zork“:

[The security] was finally beaten by a system hacker from Digital: using some archaic ITS documentation (there’s never been any other kind), he was able to figure out how to modify the running operating system. Being clever, he was also able to figure out how our patch to protect the source directory worked. Then it was just a matter of decrypting the sources, but that was soon reduced to figuring out the key we’d used. Ted had no trouble getting machine time; he just found a new TOPS-20 machine that was undergoing final testing, and started a program that tried every key until it got something that looked like text. After less than a day of crunching, he had a readable copy of the source. We had to concede that anyone who’d go to that much trouble deserved it. This led to some other things later on.

About those “other things”:

At some point around the fall of 1977, the DMG hackers had decided that their creation really, really needed a “proper” name. Lebling suggested Dungeon, which excited no one (Lebling included), but no one could come up with anything better. And so Dungeon it was. It was shortly after this that the security breach just described took place — thus, the game that that DEC hacker recovered was not called Zork, but rather Dungeon. Shortly after that, MIT heard legal rumblings from, of all places, TSR, publishers of Dungeons and Dragons — and of a dungeon-crawling board game called simply Dungeon! TSR was always overzealous with lawsuits, and the consensus amongst the MIT lawyers that the DMG hackers consulted was that they didn’t have a legal leg to stand on. However, rather than get sucked into a lengthy squabble over a name none of them much liked in the first place, they decided to just revert to the much more memorable Zork. And so by the beginning of 1978 Dungeon became Zork once more, and retained that name forevermore.

Almost. Remember that source that “Ted” had liberated from MIT? Well, it made its way to another hacker at DEC, one Robert Supnik, who ported the whole thing to the more common and portable (if intrinsically vastly less suitable for text adventures) FORTRAN — a herculean feat that amazed even the DMG hackers. Since the game described in the MDL source he had access to was called Dungeon, Dungeon this version remained. Supnik originally did the port with an eye to getting Dungeon running on the DEC PDP-11 (not, as its name might seem to imply, a successor to the PDP-10, but rather a physically smaller, less powerful, less expensive machine). With Supnik’s FORTRAN source free distributable, however, it was a short hop from the PDP-11 to other architectures. Indeed, during these early years Supnik’s Dungeon was probably more widely distributed and thus more commonly played than the DMG’s own Zork. When PCs appeared that could support it, Dungeon inevitably made its way there as well. Thus by the latter part of the 1980s the situation was truly baffling for those without knowledge of all this history: there was this free game called Dungeon which was strangely similar to the official commercial Zork games, which were in turn very similar to this other game, Adventure, available by then in at least a dozen free or commercial versions. To this day Supnik’s Dungeon is available alongside the free-at-last MDL source to the PDP-10 Zork.

Back at MIT, development continued on Zork proper, albeit at a gradually diminishing pace, through 1978. Apart from some minor bug fixing that would go on for another couple of years, the last bits of Zork were put into place in February of 1979. By this point the game had grow to truly enormous proportions: 191 rooms, 211 items, a vocabulary of 908 words including 71 distinct verbs (not counting synonyms). The implementers were just about out of new puzzle ideas and understandably a bit exhausted with the whole endeavor, and, as if that weren’t justification enough, they had completely filled the 1 MB or so of memory an MDL program was allowed to utilize. And so they set Zork aside and moved on to other projects.

The story could very well have finished there, with Zork passing into history as another, unusually impressive example of the text adventures that flourished on institutional machines for a few brief years after Adventure‘s release; Zork as another Mystery Mansion, Stuga (UPDATE: not quite; see Jason Dyer’s comment below), or HAUNT. It didn’t, though, thanks to the DMG’s very non-hackerish director, Al Vezza, who decided a few months later that the time was right to enter along with his charges the burgeoning new frontier of the microcomputer by starting a software company. Little did he realize where that decision would lead.

							
		
	
		
			
				The Birth of Infocom

				January 5, 2012
			

As the Dynamic Modeling Group put the final touches on Zork and put it to bed at last, it was beginning to feel like the end of an era at MIT. Marc Blank was about to graduate medical school and begin his residency in Pittsburgh, which would make extensive MIT hacking impossible even given his seemingly superhuman capacities. Others were finishing their own degree programs at MIT, or just running out of justifications for forestalling “real” careers with real salaries by hanging around their alma mater. In fact, a generational exodus was beginning, not just from the DMG but from MIT’s Laboratory for Computer and AI Lab in general as well. Pressures from the outside world were intruding on the hacker utopia inside MIT at last, pressures which in the next few years would change it forever. Much of the change stemmed from the invention of the microcomputer.

Most in established institutional hacking environments like MIT were initially nonplussed by what’s come to be called the PC revolution. That’s not so surprising, really. Those early microcomputers were absurdly limited machines. The homebrew hackers who bought (and often built) them were just excited to have unfettered access to something that, however minimally, met the definition of “computer.” Those privileged to find a place at an institution like MIT, however, not only had unfettered or nearly unfettered access to the systems there, but said systems were powerful enough to really do something. What charms did an Altair or even TRS-80 have to compare with sophisticated operating systems like TOPS-10 or TOPS-20 or ITS, with well-structured programming languages like LISP and MDL, with research into AI and natural-language processing, even with networked games like Maze and Trivia and, yes, Zork? The microcomputer world looked like a hopelessly uncultured and untutored one, bereft of a whole hacking tradition stretching back two decades or more. How could anyone try to build complex software using BASIC? When many institutional hackers deigned to notice the new machines at all, it was with withering contempt; Stu Galley called “We hate micros!” the unofficial motto of the DMG. They regarded the micros as little more than toys — the very same reaction as most of the general population.

By the spring of 1979, though, it was becoming increasingly clear to anyone willing to look that the little machines had their uses. WordStar, the first really usable microcomputer word processor, had been out for a year, and was moving more and more CP/M-based machines into offices and even writer’s studies. At the West Coast Computer Faire that May, Dan Bricklin demonstrated for the first time VisiCalc, the world’s first spreadsheet program, which would revolutionize accounting and business-planning practice. “How did you ever do without it?” asked the first pre-release advertisement, hyperbolically but, as it turned out, presciently; a few years later millions would be asking themselves just that question. Unlike WordStar and even Scott Adams’s Adventureland, VisiCalc was not a more limited version of an institutional computing concept implemented on microcomputer hardware. It had been conceived, designed, and implemented entirely on the Apple II, the first genuinely new idea in software to be born on the microcomputer — and a sign of a burgeoning changing of the guard.

The microcomputer brought many, many more users to computers than had ever existed before. That in turn brought more private-industry investment into the field, driven by a new reality: that you could make real money at this stuff. And that knowledge brought big changes to MIT and other institutions of “pure” hacking. Most (in)famously, the AI Lab was riven that winter and spring of 1979 by a dispute between Richard Greenblatt, pretty much the dean of the traditional hacker ethic at MIT, and a more pragmatic administrator named Russell Noftsker. Along with a small team of other hackers and hardware engineers, Greenblatt had developed a small single-user computer — a sort of boutique micro, the first of what would come to be called “workstations” — optimized for running LISP. Believing the design to have real commercial potential, Noftsker approached Greenblatt with a proposal to form a company and manufacture it. Greenblatt initially agreed, but soon proved (at least in Noftsker’s view) unwilling to sacrifice even the most minute hacker principle in the face of business realities. The two split in an ugly way, with Noftsker taking much of the AI Lab with him to implement Greenblatt’s original concept as Symbolics, Inc. Feeling disillusioned and betrayed, Greenblatt eventually left as well to form his own, less successful company, Lisp Machines.

It’s not as if no one had ever founded a company out of MIT before, nor that commerce had never mixed with the idealism of the hackers there. The founders of DEC itself, Ken Olson and Harlan Anderson, were MIT alumni who had done the basic design for what became DEC’s first machine, the PDP-1, as students there in the mid-1950s. Thereafter, MIT maintained always a cozy relationship with DEC, testing hardware and, most significantly, developing much essential software for the company’s machines — a relationship that was either, depending on how you look at it, a goldmine for the hackers in giving them perpetual access to the latest technology or a brilliant scheme by DEC for utilizing some of the best computing minds of their generation without paying them a dime. Still, what was happening at MIT in 1979 felt qualitatively different. These hackers were almost all software programmers, after all, and the microcomputer market was demonstrating that it was now possible to sell software on its own as prepackaged works, the way you might a record or a book. As a wise man once said, “Money changes everything.” Many MIT hackers were excited by the potential lucre, as evidenced by the fact that many more chose to follow Noftsker than the idealistic Greenblatt out of the university. Only a handful, such as Marvin Minsky and the ever-stubborn Richard Stallman, remained behind and continued to hew relentlessly to the old hacker ethic.

Infocom’s founders were not among the diehards. As shown by their willingness to add (gasp!) security to ITS to protect their Zork source, something that would have drawn howls of protest from Stallman on at least two different levels, their devotion to the hacker ethic of total sharing and transparency was negotiable at best. In fact, Al Vezza and the DMG had been mulling over commercial applications for the group’s creations as far back as 1976. As the 1979 spring semester wrapped up, however, it seemed clear that if this version of the DMG, about to be scattered to the proverbial winds as it was, wanted to do something commercially, the time to get started was now. And quite a lot of others at MIT were doing the same thing, weren’t they? It wouldn’t do to be left behind in an empty lab, as quite literally happened to poor old Richard Stallman. That’s how Al Vezza saw the situation, anyway, and his charges, eager to remain connected and not averse to increasing their modest university salaries, quickly agreed.

And so Infocom was officially founded on June 22, 1979, with ten stockholders. Included were three of the four hackers who had worked on Zork: Tim Anderson, Dave Lebling, and the newly minted Dr. Marc Blank (commuting from his new medical residency in Pittsburgh). There were also five other current or former DMG hackers: Mike Broos, Scott Cutler, Stu Galley, Joel Berez, Chris Reeve. And then there was Vezza himself and even Licklider, who agreed to join in the same sort of advisory role he had filled for the DMG back at MIT. Each person kicked in whatever funding he could afford, ranging from $400 to $2000, and received an appropriate percentage of the new company’s stock in return. Total startup funds amounted to $11,500. The name was necessarily nondescript, considering that no one knew quite what (if anything) the company would eventually do. The fractured, futuristic compound was much in vogue amongst technology companies of the time — Microsoft, CompuWare, EduWare — and Infocom just followed the trend in choosing the name “least objectionable to everyone.”

[image:]

As should be clear from the above, Infocom did not exactly begin under auspicious circumstances. I’d call them a garage startup, except that they didn’t even have a garage. Infocom would exist for some months as more of a theoretical company in limbo than an actual business entity. It didn’t even get its first proper mailing address — a P.O. Box — until March of 1980. Needless to say, no one was quitting their day jobs as they met from time to time over the following months to talk about what ought to come next. In August, Mike Broos had already gotten bored with the endeavor and quit, leaving just nine partners. Everyone agreed that they needed something they could put together relatively quickly to sell and really get the company off the ground. More ambitious projects could then follow. But what could they do for that first project?

The hackers trolled through their old projects from MIT, looking for ideas. They kept coming back to the games. There was that Trivia game, but it wouldn’t be practical to store enough questions on a floppy disk to make it worthwhile. More intriguing was the Maze game. Stand-up arcades were booming at the time. If Infocom could build a version of Maze for arcades, they would have something unprecedented. Unfortunately, getting there would require a huge, expensive hardware- as well as software-engineering project. The Infocom partners were clever enough, but they were all software rather than hardware hackers, and money was in short supply. And then of course there was Zork… but there was no way to squeeze a 1 MB adventure game into a 32 K or 48 K microcomputer. Anyway, Vezza wasn’t really comfortable with getting into the games business on any terms, fearing it could tarnish the company’s brand even if only used to raise some early funds and bootstrap the startup. So there was also plenty of discussion of other, more business-like ideas also drawn from the DMG’s project history: a document-tracking system, an email system, a text-processing system.

Meanwhile, Blank was living in Pittsburgh and feeling rather unhappy at being cut off from his old hacking days at MIT. Luckily, he did have at least one old MIT connection there. Joel Berez had worked with the DMG before graduating in 1977. He had spent the last two years living in Pittsburgh and working for his family’s business (which experience perhaps influenced the others to elect him as Infocom’s President in November of 1979). Blank and Berez made a habit of getting together for Chinese food (always the hacker’s staple) and talking about the old times. These conversations kept coming back to Zork. Was it really impossible to even imagine getting the game onto a microcomputer? Soon the conversations turned from nostalgic to technical. As they began to discuss technical realities, other challenges beyond even that of sheer computing capacity presented themselves.

Even if they could somehow get Zork onto a microcomputer, which microcomputer should they choose? The TRS-80 was by far the best early seller, but the Apple II, the Cadillac of the trinity of 1977, was beginning to come on strong now, aided by the new II Plus model and VisiCalc. Next year, and the year after that… who knew? And all of these machines were hopelessly incompatible with one another, meaning that reaching multiple platforms must seemingly entail re-implementing Zork — and any future adventure games they might decide to create — from scratch on each. Blank and Berez cast about for some high-level language that might be relatively portable and acceptable for implementing a new Zork, but they didn’t find much. BASIC was, well, BASIC, and not even all that consistent from microcomputer to microcomputer. There was a promising new implementation of the more palatable Pascal for the Apple II on the horizon, but no word of a similar system on other platforms.

So, if they wanted to be able to sell their game to the whole microcomputer market rather than just a slice of it, they would need to come up with some sort of portable data design that could be made to work on many different microcomputers via an interpreter custom-coded for each model. Creating each interpreters would be a task in itself, of course, but at least a more modest one, and if Infocom should decide to do more games after Zork the labor savings would begin to become very significant indeed. In reaching this conclusion, they followed a line of reasoning already well-trod by Scott Adams and Automated Simulations.

But then there was still another problem: Zork currently existed only as MDL source, a language which of course had no implementation on any microcomputer. If they didn’t want to rewrite the entire game from scratch — and wasn’t the point of this whole exercise to come up with a product relatively quickly and easily? — they would have to find a way to make that code run on microcomputers.

They had, then, quite a collection of problems. We’ll talk about how they solved every one of them — and pretty brilliantly at that — next time.

							
		
	
		
			
				ZIL and the Z-Machine

				January 7, 2012
			

When we left off last time, Marc Blank and Joel Berez were considering how to bring Zork to the microcomputer. Really, they were trying to solve three interrelated problems. At the risk of being pedantic, let me lay out them for you:

1. How to get Zork, a massive game that consumed 1 MB of memory on the PDP-10, onto their chosen minimum microcomputer system, an Apple II or TRS-80 with 32 K of RAM and a single floppy-disk drive.

2. How to do so in a portable way that would make it as painless as possible to move Zork not only to the Apple II and TRS-80 but also, if all went well, to many more current and future mutually incompatible platforms.

3. How to use the existing MDL source code to Zork as the basis for the new microcomputer version, rather than having to start all over again and implement the game from scratch in some new environment.

If you like, you can see the above as a ranking of the problems in order of importance, from “absolutely, obviously essential” to “would be really nice.” That’s not strictly necessary, though, because, as we’re about to see, Blank and Berez, with the eventual help of the others, actually solved them all pretty brilliantly. I wish I could neatly deal with each item above one at a time, but, as anyone who’s ever tackled a complicated programming task knows, solutions tend to get tangled up with one another pretty quickly. So instead I’ll have to just ask you to keep those three goals in mind as I explain how Blank and Berez’s design worked as a whole.

When faced with a game that is just too large to fit into a new environment, the most obvious solution is simply to make the game smaller — to remove content. That’s one of the things Infocom did with Zork. Stu Galley:

Dave examined his complete map of Zork and drew a boundary around a portion that included about 100 or so locations: everything “above ground” and a large section surrounding the Round Room. The object was to create a smaller Zork that would fit within the constraints established by the design of Joel and Marc. Whatever wouldn’t fit was to be saved for another game, another day.

By cutting Zork‘s world almost in half, Infocom were able to dramatically reduce the size of the game. 191 rooms became 110; 211 items became 117; 911 parseable words became 617. It wasn’t a complete solution to their problems, but it certainly helped, and still left them with a huge game, about the same size as the original Adventure in numbers of rooms but dwarfing it in terms of items and words, and easily bigger than any other microcomputer adventure game. And, as Galley notes above, it left them with plenty of raw material out of which to build a possible sequel.

There were more potential savings to be had by looking at the MDL compiler. As a language designed to perform many general-purpose computing tasks, many of MDL’s capabilities naturally went unused by an adventure game like Zork. Even unused, however, they consumed precious memory. Infocom therefore took a pair of pruning shears to MDL just as they had to Zork itself, cutting away extraneous syntax and libraries, and retaining only what was necessary for implementing an adventure game. They named the new language ZIL, for Zork Implementation Language; the compiler that enabled the language, which still ran only on the PDP-10, they called Zilch. ZIL remained similar enough to MDL in syntax and approach that porting the old MDL Zork to ZIL was fairly painless, yet the new language not only produced tighter, faster executables but was much cleaner syntactically. In fact, ZIL encouraged Infocom to not just port Zork to the new language but to improve it in some ways; the parser, in particular, became even better when implemented in the more sympathetic ZIL.

Here is Zork‘s lantern in MDL:

<OBJECT ["LAMP" "LANTE" "LIGHT"]
	["BRASS"]
	"lamp"
	<+ ,OVISON ,TAKEBIT ,LIGHTBIT>
	LANTERN
	()
	(ODESCO "A battery-powered brass lantern is on the trophy case."
	 ODESC1 "There is a brass lantern (battery-powered) here."
	 OSIZE 15
	 OLINT [0 <CLOCK-DISABLE <CLOCK-INT ,LNTIN 350>>])>

And here’s the same item in ZIL:

<OBJECT LANTERN
 (LOC LIVING-ROOM)
 (SYNONYM LAMP LANTERN LIGHT)
 (ADJECTIVE BRASS)
 (DESC "brass lantern")
 (FLAGS TAKEBIT LIGHTBIT)
 (ACTION LANTERN-F)
 (FDESC "A battery-powered lantern is on the trophy
 case.")
 (LDESC "There is a brass lantern (battery-powered)
 here.")
 (SIZE 15)>

Just for the record, I’ll give a quick explanation of the ZIL code shown above for those interested. The first line simply tells us that what follows will describe an item — or, in ZIL terminology, “object” — called “lantern.” The next line tells us it is in the living room of the white house. Then we see that it can be referred to by the player as “lamp,” “lantern,” or “light,” with the optional adjective “brass” (which might come in handy to distinguish it from the broken lantern found in another part of the game). The so-called short description — more properly the name under which it shows up in inventory listings and other places where it must be plugged into the text — is “brass lantern.” The TAKEBIT flag means that it is an item the player can pick up and carry around with her; the LIGHTBIT means that it casts light, illuminating any dark room in which it is placed or carried. LANTERN-F is the special action routine for the lantern, a bit of code that allows us to write special “rules” for the lantern that apply only to it, such as routines to allow the player to turn it off and on; as I discussed earlier, this level of programmability and the associated object-oriented approach really make MDL, and by extension ZIL, stand out from other adventure-game development systems of their era. The FDESC is the description of the lantern that appears before it has been moved, as part of the room description for the living room; the LDESC appears after it has been moved and set down somewhere else. Finally, the SIZE determines the size and weight of the lantern for purposes of deciding how much the player can carry with her at one time. The rather messier MDL source I’ll leave as an exercise for you to translate…

So, at this point Infocom have largely addressed problem #3, and at least come a long way with problem #1. That left them still with problem #2. You might think it would be easy enough to design an adventure-engine / database partnership like that Scott Adams came up with. However, this was problematic. Remember that one of the things that made Zork‘s development environment, whether it be MDL or ZIL, so unique was its programmability. To go to a solution like that of Adams would force them to sacrifice that, and ZIL in the process. For ZIL to work, it needed to be able to run code to handle those special interactions like turning the lamp on or off; it needed, in other words, to be a proper, Turing-complete programming language, not just a data-entry system. But how to do that while also having a system that was portable from machine to (incompatible) machine? The answer: they would design a virtual machine, an imaginary computer optimized just for playing text adventure in the same way that ZIL was for coding them, then code an interpreter to simulate that computer on each platform for which they decided to release Zork.

Virtual machines are everywhere today. The apps you run on your Android smartphone actually run inside a virtual machine. You might use something like VMWare on your desktop machine to let you run Linux inside Windows, or vice versa. Big mainframe installations and, increasingly, high-end servers running operating systems like Linux often run in virtual machines abstracted from the underlying hardware, which amongst other benefits lets one carve one giant mainframe up into a number of smaller mainframes. Scenarios like that aside, virtual machines are so appealing for essentially two reasons; virtually (ha!) everyone who decides to employ one does so for one or the other, or, often, both. First, they are much more secure. If malicious code such as a virus gets introduced into a virtual machine, it is contained there rather rather than infecting the host system, and code that crashes the virtual machine — whether it does so intentionally or accidentally — crashes only the virtual machine, not the host system as a whole. Second, a virtual machine allows one to run the same program on otherwise incompatible devices. It is “write once, run everywhere,” as Java zealots used to say. In their case, each target platform need only have a current implementation of the Java virtual machine (not necessarily the language; just the virtual machine). Virtual machines do also have one big disadvantage: because the host platform is emulating another computer, they tend to be much, much slower than native code run on the same platform. (Yes, technologies like just-in-time compilation can do a lot to alleviate this, but let’s not get any further afield.) Still, computing power is cheap and ubiquitous these days, so this generally doesn’t present such a problem. In fact, the modern situation can get kind of ridiculous; my Kindle version of The King of Shreds and Patches is actually built from one virtual machine (Glulx) running inside another virtual machine (the Java virtual machine), all running on a tiny handheld e-reader — and performance is still acceptable.

Even in 1979 the virtual machine was not a new idea. Between 1965 and 1967, a team at IBM had worked in close partnership with MIT’s Lincoln Laboratory to create an operating system called CP-40, under which up to 14 users were each able to log into their own, single-user computer — simulated entirely in software running on a big IBM mainframe. CP-40 eventually became the basis of the appropriately named VM operating system, first released by IBM in 1972 and still widely used on mainframes today. In 1978, a Pascal implementation known as UCSD Pascal introduced the P-Machine, a portable virtual machine that allowed programs written in UCSD Pascal to run on many disparate machines, including even the Apple II following the release of Apple Pascal in August of 1979. The P-Machine became a major influence on Infocom’s own virtual machine, the Z-Machine.

In opting for a virtual machine they would of course have to pay the performance penalty all virtual machiness enact, but this wouldn’t be quite as big as you might expect. Just as they had optimized ZIL, Blank and Berez made the Z-Machine as light and efficient as they possibly could, including only those features really useful for running adventure games. They would implement each platform’s interpreter entirely in highly optimized assembly language, with the result that Zork would, even running inside a virtual machine, still run much, much faster than the BASIC adventures that were common at the time. Anyway, the processing powers of the micros, limited as they were, had never been their real concern in getting Zork onto them — memory was the bottleneck. Yes, they would have to sacrifice some additional memory for the interpreter, but they could save even more by building efficiencies into the Z-Machine. For instance, a special encoding scheme allowed them to store most characters in 5 rather than 8 bits, and to replace the most commonly used words with abbreviations in the code. Such text compression was very significant considering that text is, after all, most of what makes up a text adventure. With such compression techniques, along with all of the slicing and dicing of the game itself and the ZIL language, they ended up with a final game just 77 K in size, not counting of course the virtual-machine interpreter needed to run it; this latter Infocom called Zip (not to be confused with the file-compression format). The 77 K game file itself, which Infocom took to calling the “story file,” is essentially a snapshot of the virtual machine’s memory in its opening state.

When we talk about the storage capacity of a computer, we’re really talking about (much to the confusion of parents and grandparents everywhere) two separate figures: disk capacity and memory (RAM) capacity. An Apple II could store 140 K on a single floppy disk, while the TRS-80 actually did a bit better, managing 180 K. Thus, Infocom now had a game that could fit quite comfortably along with the necessary interpreter on a single disk. RAM was the problem: even if we forget about the necessary interpreter, 77 K just doesn’t go into 32 K, no matter how much you try to force it. Or does it?

It was not unheard of even at this time to use the disk as a sort of secondary memory, reading bits and pieces of data from there into RAM and then discarding them when no longer needed. Microsoft had used just this technique to fit Adventure into the 32 K TRS-80; each bit of text, all stored in a file external to the game itself as per Crowther and Woods’s original design, was read in from disk only when it needed to be printed. However, Infocom’s more sophisticated object-oriented system necessarily intermingled its text with its code, making such a segregated approach impractical. Blank and Berez therefore went a step further: having already designed a virtual machine, they now added an implementation of virtual memory to accompany it.

The concept of virtual memory was also then not a new one in the general world of computer science. In fact, virtual memory dates back even further than the virtual machine, to an early supercomputer developed at the University of Manchester called the Atlas, officially commissioned in 1962. In a virtual-memory system, each program does not have an “honest” view of the host computer’s physical memory. It rather is given a sort of idealized memory map to play with, which may have little to do with the real layout of its host computer’s physical RAM. When it reads from and writes to pieces of this map, the host automatically translates the virtual addresses into real addresses inside its physical memory, transparently. Why bother with such a thing, especially as it necessarily adds processing overhead? Once again, for two main reasons, both of which are usually taken as applicable to a multitasking operating system only, something that was little more than a dream for a microcomputer of 1979 or 1980. First, by effectively sandboxing each program’s memory from every other program’s memory, as well as that being used by the operating system itself, virtual memory assures that a program cannot, out of malice or simple bugginess, go rogue and trash other programs or even bring down the whole system. Second, it gives a computer a fallback position of sorts — an alternative to outright failure — should the program(s) running on it ask for more physical memory than it actually has to give. When that happens, the operating system looks through its memory to find pieces that aren’t being used very often. It then caches these away on disk, making room in physical RAM to allocate the new request. When cached areas are accessed again, they must of course be read back into RAM, possibly being swapped with other chunks if memory is still scarce. All of this happens transparently to the program(s) in question, which continue to live within their idealized view of memory, blissfully unaware of the huffing and puffing the underlying system is doing to keep everything going. Virtual memory has been with us for many years now in the desktop PC world. Of course, there inevitably comes a point of diminishing returns with such a scheme; if you’ve ever opened lots and lots of windows or programs on an older PC and seen everything get really, really slow while the hard disk grinds like a saw mill, now you know what was going on (assuming you didn’t already know, of course; we assume no default level of technical knowledge here at Digital Antiquaria Central).

For the Z-Machine, Berez and Blank employed a much simpler version of virtual memory than you’ll find in the likes of Windows, Linux, or OS X. While such important dynamic information as the current position of the items in the game world must of course always be tracked and updated dynamically, most of the data that makes up a game like Zork is static, unchanging: lots and lots of text, of course, along with lots of program code. Berez and Blank were able to design the ZIL compiler in such a way that it placed all of the stuff that could conceivably change, which we’ll called the dynamic data, first in the story file. Everything else, which we’ll call the static data, came afterward. As it turned out, the 77 K Zork story file contained only 18 K of dynamic data. So, here’s what they did…

The dynamic data — memory the virtual machine will write to as well as read — is always stored in the host computer’s RAM. The static data, however, is loaded in and out of RAM by the interpreter as needed in 1 K blocks known as pages. Put another way: from the perspective of the game program, it has fully 77 K of memory to work with. The interpreter, meanwhile, is frantically swapping blocks of memory in an out of the much more limited physical RAM to maintain this illusion. Like the virtual machine itself, this virtual-memory scheme obviously brings with it a speed penalty, but needs must. On a 32 K system with 18 K reserved for dynamic data, Infocom still had 14 K left over to host the VM interpreter itself, a small stack (an area where programs store temporary information needed for moment-to-moment processing), and a page or two of virtual memory. Sure, it was a bit sluggish at times, but it worked. And, when run on a system with, say, 48 K, the interpreter could automatically detect and use this additional memory to keep more static data in physical RAM, thus speeding things along and rewarding the user for her hardware investment.

With the ZIL / Z-Machine scheme as a whole, Infocom had created a robust, reusable system that could have life far beyond this one-time task of squeezing Zork onto the TRS-80 and Apple II. I trust I’m not spoiling anything if I reveal that that’s exactly what happened.

With this technical foundation, we’ll look next time at the process of actually getting Zork onto the market.

							
		
	
		
			
				Selling Zork

				January 11, 2012
			

When we left off, it was late summer, 1979, and seven of the nine partners involved with Infocom were living in Boston, working various day jobs, and discussing as time allowed just what the newly minted company should actually do. Meanwhile, the other two partners, Marc Blank and Joel Berez, were living in Pittsburgh and doing something more practical about the question, designing — entirely on paper at this stage — a system for getting Zork (or at least half of it) from the PDP-10 to the microcomputer. As Blank and Berez continued their work that fall, they became more and more convinced that, yes, this could actually work, and so began lobbying the others back in Boston to make Zork Infocom’s first project. Their case was compelling enough that even a reluctant Al Vezza finally agreed.

As it happened, Berez had been accepted for a graduate business program at MIT’s Sloan School of Management. He moved back to Boston that November for that — and to take the title of President of the still largely theoretical Infocom. Faced with being trapped in Pittsburgh all by himself while his friends implemented his designs, Blank made the rather personally momentous decision to drop out of his medical residency and come to Boston as well. Thus, as 1980 dawned the proverbial gang was all back together again, and work on a new Zork was proceeding apace.

With their connections at MIT and DEC, PDP-10 computer time was not hard to come by even for those at Infocom who had officially left MIT. Indeed, for all that their ultimate goal was to sell Zork on the micros, Infocom continued at this stage to do their work entirely on the PDP-10; perhaps the old motto of “We hate micros!” was still not entirely dead. Blank and Lebling wrote on the PDP-10 the complete ZIL development system, including the compiler and, for testing purposes, the first working Z-Machine virtual machine. Remarkably, the conceptual design that Blank and Berez had sketched out on napkins and scrap paper turned out perfectly workable in reality. As I noted in my last post, the reimplementation in ZIL even gave them the opportunity to improve on the original Zork in some ways.

Even when the time came to leave the PDP-10, Infocom’s biases showed through; the second Z-Machine implementation was not for a Radio Shack or an Apple, but for a DEC PDP-11. While the PDP-10 was DEC’s flagship model, big and powerful enough that it probably deserves to be labeled a mainframe rather than a minicomputer, the PDP-11 was the company’s smaller, cheaper bread-and-butter model. DEC is estimated to have sold over 170,000 of them during the 1970s alone. Relatively portable (if being able to move a computer with only a single van can count as “portable”) and requiring no raised floor or other data-center machinations, PDP-11s were everywhere: in factories, in laboratories, in air-traffic control centers — and in Joel Berez’s bedroom(!). The PDP-11 already had a Zork in a sense, having been the first target platform of that FORTRAN port of Dungeon, but that didn’t stop Infocom from making PDP-11 Zork their first commercial product. Relatively ubiquitous as the PDP-11 was, the market was not exactly a commercial gaming stronghold; Zork reportedly sold less than 100 copies there. (One of which recently surfaced on eBay; see Jason Scott’s Get Lamp site for a scan of the surprisingly thorough — albeit typewritten and mimeographed — manual.) Clearly, Infocom needed to get Zork onto the microcomputers.

In that spirit, Infocom purchased a TRS-80 system, and Scott Cutler, one of the few partners with any real microcomputer experience, set to work with Blank’s help to build a Z-Machine for it. The moment of truth came at last:

Scott and Marc demonstrated that Zork I was alive in it by starting the game and actually collecting points with the incantation “N.E.OPEN.IN.” (It’s certainly no less inspiring than “Come here, Mr. Watson; I want you!”)

It’s always a fraught moment when a programming project finally comes to life and does something. I remember my excitement when my own Z-Machine interpreter, Filfre, first printed out the opening text to the first game I elected to test it with, Infidel. I can only imagine Blank and Cutler’s excitement, when all of this was so new and the stakes were so much higher. Anyway, the Z-Machine concept worked. Once the game was completely playable, Infocom, heirs to an institutional computing tradition of doing things the right way, did something virtually unprecedented for a microcomputer game: they put their new game through rigorous, repeated testing. Their star tester was an MIT student named Mike Dornbrook, who fell in love with the game and obsessed over it endlessly, crafting lovingly detailed maps of its geography and working to iron out not just technical problems but dodgy puzzles and parser difficulties. (If only On-Line Systems, Scott Adams, and other developers had a similar patience and commitment to quality in these early days…)

Ongoing testing aside, Infocom had a real, marketable product. Now they just needed to decide how to sell it. One option was to do what Ken Williams was deciding to do at about this time, to go it alone. With little experience or knowledge of the young microcomputer industry, however, that seemed risky, and no one was excited about trying to devise packaging and duplicating thousands (hopefully!) of disks. They therefore began shopping Zork to publishers. An approach to Microsoft was rebuffed by the marketing department; they already had their own text adventure, Adventure itself, and apparently felt one was enough for any publisher. Later Bill Gates, who was a fan of the PDP-10 Zork, heard about the offer and tried to reopen the subject, but by then Infocom was already in talks with Dan Fylstra of Personal Software, leaving a Microsoft Zork to history as a fascinating might-have-been.

Personal Software has largely been forgotten today, but at the time it was the brightest star of the young software industry, easily eclipsing Microsoft. Founded by Peter R. Jennings and Fylstra, a founding editor of the seminal Byte magazine, PS hit a goldmine in 1979 when it reached an agreement with Dan Bricklin and Bob Frankston to publish VisiCalc for the Apple II. Aided by some smart PS advertising that properly emphasized the revolutionary nature of this truly revolutionary product, VisiCalc was by the time Infocom came calling the talk of the business world and the software hit of the young microcomputer industry, eventually selling in the hundreds of thousands. VisiCalc not only made PS the biggest software publisher on the planet and the subject of profiles by the likes of Time magazine, but also gave them huge power within the industry. This power extended even to Apple itself; countless customers were putting the cart before the horse, buying Apple IIs just to have a computer to run their new copy of VisiCalc on. It was the first “killer app” of the PC era, and sold all of the Apple IIs that that label would imply. With money and power like that, PS certainly seemed not a bad way for Infocom to get their new game out there. Fylstra had attended business school at MIT, and was acquainted from there with both Vezza and the PDP-10 version of his product. It didn’t take Berez and Vezza much time to get a deal done which even included a sorely needed advance on future royalty payments, what with Infocom having pretty much spent their initial $11,500 on hardware, testers, and PDP-10 time.

In between their other tasks, the other partners wrote a couple of magazine articles to help drum up anticipation. “How to Fit a Large Program into a Small Machine,” a cagey explanation of the concepts of the virtual machine and virtual memory, appeared in Creative Computing that July; “Zork and the Future of Computerized Fantasy Simulations,” a more theoretical article on the burgeoning art of the text adventure, appeared in Byte‘s big “adventure” issue in December. Having not yet come up with the elegant name of “interactive fiction,” Lebling saddled Zork and its peers with the rather unwieldy “computerized fantasy simulations” (“CFS”) label in the latter. As it appeared the TRS-80 version of Zork was just coming onto the market under the PS imprint.

Initial sales were not overwhelming; the TRS-80 version sold about 1500 copies in its first nine months. This figure can perhaps be partly attributed to the unimaginative and halfhearted marketing of PS, who in the wake of the VisiCalc juggernaut were increasingly uncertain whether they wanted to be involved with games at all. It’s also true, however, that the TRS-80 software market never really thrived in the way that sales of TRS-80 hardware might make you expect. A big culprit was Radio Shack’s own policies. They insisted on selling in their stores only software published under their own imprint. Yet they offered developers a very paltry royalty compared to the rest of the industry, and refused to even properly credit them on the software itself, preferring the image of an all-benevolent Tandy Corporation that apparently dropped immaculate software creations out of its rear end. Owners of other computer stores, meanwhile, such as the ComputerLand outlets that were exploding across the country, left Radio Shack to sell and service its own machines, instead concentrating on other platforms. It’s likely that the TRS-80 Zork fell at least partially into this distributional black hole that was already in danger of making the TRS-80 an also-ran in contrast to the young microcomputer industry’s newly anointed darling, the Apple II. In fact, that very December Apple went public, making its founders and about 300 others instant millionaires — the first big tech IPO, and a sign that soon the “microcomputer industry” would just be the “computer industry.”

Speaking of which: Bruce Daniels, the only member of the original Zork team who hadn’t joined Infocom, had accepted a job with Apple and moved to California after graduation. He agreed to create a Z-Machine for the Apple II under contract. Apple II Zork was released in February of 1981, and it did much better than the TRS-80 version, selling a steady 1000 copies per month. Infocom now had a steady stream of revenue at last, along with the basic technological infrastructure — ZIL and the Z-Machine — that would define the company for the rest of its life. Things were starting to look pretty good — but twists and turns were just ahead.

We’ll talk about them soon enough, but next time I want to leave the historical reality behind for a while in favor of virtual reality. Yes, we’re going to take a little tour of Zork‘s Great Underground Empire.

							
		
	
		
			
				Parser Games

				January 16, 2012
			

I’ll be diving into Zork in some detail in my next post, but before I do that I just felt behooved to return in a bit more rigorous way to a subject I broached in my first post in this series: how impressive Zork was in the microcomputer world of 1980-81. I have a point I’m driving toward, one which involves a little bit of theory (uh oh!). But first let me set the stage with a few choice quotes from Jason Scott’s Get Lamp project.

“There were two products that sold more computers than anything else: VisiCalc and Zork.” — Mike Berlyn

“We would go after school to this store and play whatever games were available, type games in, and I remember Zork coming out and playing it on an Apple II, and we were just completely blown away.” — Andrew Kaluzniacki

“People would see Zork and say, ‘I gotta have me one of them, that’s all. Who do I make the check out to?'” — Mike Berlyn

“I think there was a time period, probably ’80 to ’84 sort of range, where, for a lot of the machines, compared to anything else out there, there was just nothing that compared.” — Mike Dornbrook

Yes, Berlyn’s placing Zork on a pedestal with the industry-defining VisiCalc is a bit over the top, but you get the picture. Statements like these read as ironic and maybe even a bit tragic today. Within a few years after Dornbrook’s 1980 to 1984 timeline, interactive-fiction publishers and fans would be lamenting IF’s lack of immediate, obvious appeal as the main reason for the genre’s declining commercial fortunes, amidst plenty of griping about the adolescent illiteracy of the typical videogame demographic and the like.

So, what did those early players find so immediately appealing about Zork? Certainly its world was not only bigger but modeled in a more rigorous, sophisticated way than anything that had come before. Certainly its writing, while often necessarily terse due to space constraints, showed a wit and nuance and, well, attention to basic grammar and spelling that eluded its competition. And certainly its design was, if still beset by infuriating mazes and some more-than-dodgy puzzles, also fairer than the norm. But these are things that text-adventure afficionados notice, the sort of things that only become clear after spending a few hours with Zork and (at least) a few hours with other games of its period. As the quotes above illustrate, people were playing Zork for a few minutes in shops and buying it in awe — and perhaps, Berlyn’s hyperbole aside, sometimes also buying the Apple II system they needed to play it. Why? I think the answer is bound up with the adventure game’s love-hate relationship with the parser.

In Joysprick, a book about James Joyce, Anthony Burgess divides authors into two fundamental categories. (Feel free to insert your own “two types of…” joke here; I’ll wait. Ready? Okay…) Class One authors are concerned exclusively with the storyworld — the virtual reality, if you will — that lives “beneath” their words. “Content being more important than style, the referents ache to be free of their words and to be presented directly as sense data.” “Good” writing, under this rubric, is writing that exists solely to serve the setting and the story it reveals, that evokes them as vividly as possible but that also gets out of the way of the reader’s imaginative recreation of the underlying virtual reality by diligently refusing to call attention to itself. Class Two authors, meanwhile, are concerned about their language as a end unto itself. Their books are “made out of words as much as character.” Sometimes, as in the case of Finnegans Wake or the “Siren” chapter of Ulysses, language seems like all there is — the writing is all “surface.” Some might say that being successful on this second level, or at least striving to be, separates “literature” from mere “fiction.” But let’s stay away from that can of worms. In fact, let’s try not to make any value judgments at all as we apply some of this to interactive fiction.

I don’t want to apply these ideas so much right now to the text that an IF game outputs to the player, but rather to the text that the player inputs — to the parser, in other words. One way to approach IF is as a rich virtual reality to be inhabited. In this view, that of the Class One player, the parser exists only as a conduit for her to inject her choices into that world, just as a Class One reader views the text as a window — hopefully as transparent as possible — through which she views the action in the storyworld. This has always been my basic approach to IF as a player and a writer. Since I seem to be indulging in a lot of direct quoting in this post anyway, let me get a bit pretentious and quote an earlier version of myself. I wrote the following as a comment on Mike Rubin’s blog back in 2008:

I think many people, myself included, did indeed play Facade as a comedy, trying ever more outrageous actions to see what happens, and, indeed, at some level trying to “break” the system. I would say, though, that when a player begins to do this it’s a sign that the game designer has failed at some level. I began to play Facade for laughs after trying several reasonable approaches and having the game respond either not at all or in a way that was clearly inappropriate to my actions. The mimesis broke down for me then and I began to treat the system as a clever toy rather than an immersive interactive narrative. There’s no shame in Facade’s failure, of course. It’s a revolutionary conception, and bound to need many more iterations before even approaching complete believability.

This does raise a point, though: I don’t think games can maintain their mimesis by scolding the player, telling her in no uncertain terms that she shalt NOT when she attempts to eat her sword or hit her friends. Rather, we should strive to make our writing so good and our environments so believable and our interactions so smooth that our player is drawn into our story, and it never occurs to her to eat her sword or hit her friends, any more than it would to her avatar. In other words, we must enable her to truly BECOME her avatar for the little while she plays.

As soon as the game starts to break down, so to speak, for the player… that’s when she remembers it’s just a silly text adventure, and that’s when she starts playing it for laughs and trying to break the system even further. I do it every year with at least a dozen of the Comp games, PURLOINING doors and buildings and generally running amok through the storyworld. Entertainment is where you find it, after all.

Some players will of course come to every game determined to break it. Some might find IF in general more interesting as a system to be played with than as a story, although I think other genres of gaming would scratch this particular itch much better. To those players, I say, fine, have your fun. However, I think most people who play IF do come to it wanting to be immersed and to experience a storyworld and, yes, a coherent story through someone else’s eyes for a while. The rewards of that must be far greater than those of trying random actions to see where the boundaries of the simulation are (entertaining as that can be).

(Did we say something about not making value judgements? I forget…)

Still, those folks who marveled at Zork in computer stores were not responding to it as a deep and immersive piece of fiction, nor even as a really sophisticated adventure game. Their awe was all bestowed at the level of the parser itself, as an object — a toy — unto itself. For all of the space restrictions they were laboring under, Infocom reserved room for witty rejoinders to the sort of crazy or nonsensical inputs people might walk up and enter in a computer store.

WEST OF HOUSE

YOU ARE STANDING IN AN OPEN FIELD WEST

OF A WHITE HOUSE, WITH A BOARDED FRONT

DOOR.

THERE IS A SMALL MAILBOX HERE.

>FUCK

SUCH LANGUAGE IN A HIGH-CLASS

ESTABLISHMENT LIKE THIS!

>SHIT

YOU OUGHT TO BE ASHAMED OF YOURSELF.

>TAKE ME

HOW ROMANTIC!

>ZORK

AT YOUR SERVICE!

>XYZZY

A HOLLOW VOICE SAYS 'CRETIN'.

>FIND HOUSE

IT'S RIGHT IN FRONT OF YOU. ARE YOU

BLIND OR SOMETHING?

>FIND HANDS

WITHIN SIX FEET OF YOUR HEAD, ASSUMING

YOU HAVEN'T LEFT THAT SOMEWHERE.

>FIND ME

YOU'RE AROUND HERE SOMEWHERE...

>CHOMP

I DON'T KNOW HOW TO DO THAT. I WIN IN

ALL CASES!

>WIN

NATURALLY!

>SIGH

YOU'LL HAVE TO SPEAK UP IF YOU EXPECT ME

TO HEAR YOU!

>REPENT

IT COULD VERY WELL BE TOO LATE!

>WHAT IS A GRUE?

THE GRUE IS A SINISTER, LURKING PRESENCE

IN THE DARK PLACES OF THE EARTH. ITS

FAVORITE DIET IS ADVENTURERS, BUT ITS

INSATIABLE APPETITE IS TEMPERED BY ITS

FEAR OF LIGHT. NO GRUE HAS EVER BEEN

SEEN BY THE LIGHT OF DAY, AND FEW HAVE

SURVIVED ITS FEARSOME JAWS TO TELL THE

TALE.

>WHAT IS A ZORKMID?

THE ZORKMID IS THE UNIT OF CURRENCY OF

THE GREAT UNDERGROUND EMPIRE.

>YELL

AAAARRRRGGGGHHHH!

This is playing Zork as Eliza: seeing what response this or that input gives, and of course probing for the limits. As some recent experiments have demonstrated, this mode of interaction is still pretty much the default when the uninitiated are confronted with a work of IF for the first time. Back in 1981, when computers were not so well understood and for most people still seemed vaguely magical (if not sinister), the idea of typing something, especially something off the subject or just plain inappropriate, and being understood was a much more powerful one, bringing to mind HAL and the Enterprise‘s talking computer.

All of which is apropos of… what? I’m not sure there are any grand lessons to take away here. After a pretty short while, toying with the parser and trying to break things loses its appeal, and the player either starts to engage with the storyworld and its fiction or just goes on to something else; thus the impatience I express above with players who just can’t seem to get past their triumph that, yes, they can break the parser and probably even the world simulation without too much effort. Over a decade after Zork, a graphical adventure called Myst became for some years the bestselling computer game of all time. It was often labeled the least-played bestseller ever. People bought it to show off their new graphics cards, sound cards, and CD-ROM drives in the midst of the “multimedia PC” boom of the early 1990s, but I’d be shocked if even ten percent seriously engaged with its intellectually intricate puzzles or made a real effort to finish it. Similarly, I suspect that plenty of copies of Zork existed more as something to pull out at cocktail parties than an abiding passion.

But let’s not start printing our “I appreciate Zork on a much deeper level than you” tee-shirts quite yet, because it’s also true that none of us ever wholly become Class One players. One more Get Lamp quote, this time from Bob Bates, captures some of the back and forth that forms a big part of the delights of the text adventure:

“A lot of games only program the ‘if,’ which is that main path I was talking about earlier. If the player does this and everything’s right, then you do this and the game goes on. But there’s always that ‘else.’ What if the player doesn’t do what you expected? What if he comes up with this weird idea or that strange input or that other, off-the-wall thing that he wants to try, just to see if the game breaks. Just to see where the edges are. That’s part of the fun of playing a text adventure, and that’s part of the fun — a great deal of the fun — that I had in creating them, in that imagined dialog with the player, so that at the end of the day when the player does this very weird thing, and he says, ‘Oh, nobody would ever think of trying this,’ he says, ‘Oh, my goodness! There’s a non-default response there! The author actually thought about that!’ That helps form that bond between you and the author. ‘That guy’s just as strange as I am. He and I think the same way.'”

So, a motto for text-adventure success: attract and charm them with your parser, retain them with your storyworld. In the spirit of the latter, we’ll put our Class One players’ hats on and venture into the Great Underground Empire next time. No, really, this time I promise.

							
		
	
		
			
				Exploring Zork, Part 1

				January 18, 2012
			

I’ve personally never found detailed accounts of other people’s experiences in videogames all that compelling. Like a Chris Farley interview, they mostly tend to end up as all anecdote and little narrative substance. I’ve therefore shied away from that approach for this blog. I do, however, want to examine Zork in some depth, and in a way that goes beyond just a review. So, I thought I would write these posts as a sort of guided tour of the game. You can just read along and get a pretty good idea of the experience of a player, or if you’re more ambitious you can play along with me. I do spoil some puzzles, but pretty much only the bad ones, so this might even make a nice way to experience the game, pitched somewhere between going it completely alone and just typing from a walkthrough. The approach is inspired by the old Computer Gaming World articles of Scorpia.

Infocom’s took a dedication to quality to extremes almost unheard of amongst game developers of their era. Zork was updated about a dozen separate times between 1980 and 1984, to add polish and/or to fix bugs. When players tackle it today, they naturally tend to end up playing the final, definitive version that is the most widely distributed today. For this project, however, I wanted to see the game the way players originally would have. This playthrough is therefore based on what I believe to be its first release on the Apple II, the platform where it first achieved widespread popularity.

There’s some question as to whether the Zork games should be considered freely distributable or not. Activision, the company that owns the Infocom intellectual property, released them for free some 15 years ago as part of a promotional campaign for the graphic adventure Zork: Grand Inquisitor, but there’s room for debate about whether they really meant that to be a permanent, free forevermore sort of thing or just a limited window of opportunity. Such questions are a bit more than academic because, despite not having done much with the Infocom games in some 15 years, there are signs that Activision still regards them as having some value, unlike other games of their era that I haven’t hesitated to make available on this site. Still, sites like the Infocom Homepage have been hosting the Zork games for years with no apparent repercussions. Because of that, and because I’d really like for anyone who wants to follow along with what follows to have access to the same older version of Zork that I’m using, I’m going to make it available here, as either an Apple II disk image (for the ultimate retro-experience) or a standalone story file you can load into a modern interpreter. Or you can even play it right in your browser.

But not, I’m embarrassed to have to say, my own Filfre. This is what’s known as a version 2 story file, a very early standard that Infocom soon updated to version 3, a standard they stayed with for many games thereafter. Because the early Zorks were quickly replaced by their version 3 counterparts, I never got around to adding support for earlier versions, seeing these as of only historical interest. Ah, the irony bites deep… I really need to get on that. Anyway, Frotz will do you just fine in the meantime, as will plenty of others.

When we first boot Zork on our trusty Apple II, we’re greeted with one of the most famous openings in gaming history, the white house with the mailbox.

[image:]

You’ll notice that the screenshot above and the transcript excerpts that follow are written in ALL CAPS. The Z-Machine specification supported lower case right from the beginning, but, rather shockingly, the Apple II’s standard display hardware still did not at this stage. (Lower case did not become a standard feature on the Apple II until the release of the IIe in 1983.) Thus the interpreter has to translate the text into capitals for output. I’ve preserved this in the interest of giving the full, authentic experience; I hope it’s not too annoying.

Inside the mailbox is a leaflet.

>READ LEAFLET

WELCOME TO ZORK

ZORK IS A GAME OF ADVENTURE,

DANGER, AND LOW CUNNING. IN IT YOU WILL

EXPLORE SOME OF THE MOST AMAZING

TERRITORY EVER SEEN BY MORTALS.

NO COMPUTER SHOULD BE WITHOUT ONE!

THE ORIGINAL ZORK WAS CREATED BY TIM

ANDERSON, MARC BLANK, BRUCE DANIELS, AND

DAVE LEBLING. IT WAS INSPIRED BY THE

ADVENTURE GAME OF CROWTHER AND WOODS.

THIS VERSION WAS CREATED BY MARC BLANK,

DAVE LEBLING, JOEL BEREZ, AND SCOTT

CUTLER.

(C) COPYRIGHT 1979 & 1980 INFOCOM,

INC. ALL RIGHTS RESERVED.

Interestingly, this specific acknowledgment of the debt Zork owes to Adventure would go away in later releases. But then we don’t need the leaflet to make us aware of that debt. As I stated in a previous post, the similarity of Zork and Adventure, particularly the opening sections of each, is pronounced enough that the former can almost seem a remake of the latter. In Zork the white house (“A BEAUTIFUL COLONIAL”) stands in for Adventure‘s well house, but there’s still plenty of difficult-to-map forest surrounding it.

[image:]

As we explore, you might want to expand the map above and those that follow in another window to help you to follow along.

In keeping with a general theme of doing Adventure better than Adventure itself, Zork‘s above-ground area does have a bit more of interest to offer. Up a tree we find a jewel-encrusted egg, the first of 19 treasures we will need to collect to win. (Personal Software’s promotional copy, which talked about the “20 treasures of Zork,” didn’t even get this figure right.)

>U

UP A TREE

YOU ARE ABOUT 10 FEET ABOVE THE GROUND

NESTLED AMONG SOME LARGE BRANCHES. THE

NEAREST BRANCH ABOVE YOU IS ABOVE YOUR

REACH.

BESIDE YOU ON THE BRANCH IS A SMALL

BIRD'S NEST.

IN THE BIRD'S NEST IS A LARGE EGG

ENCRUSTED WITH PRECIOUS JEWELS,

APPARENTLY SCAVENGED SOMEWHERE BY A

CHILDLESS SONGBIRD. THE EGG IS COVERED

WITH FINE GOLD INLAY, AND ORNAMENTED IN

LAPIS LAZULI AND MOTHER-OF-PEARL. UNLIKE

MOST EGGS, THIS ONE IS HINGED AND HAS A

DELICATE LOOKING CLASP HOLDING IT

CLOSED. THE EGG APPEARS EXTREMELY

FRAGILE.

The egg is also the key part of one of the cruelest puzzles; more on that much later.

The egg illustrates an aspect of Zork that can be somewhat jarring, even comical. Most of the environment is described very tersely indeed, as was typical in games of this era (“THIS IS A DIMLY LIT FOREST, WITH LARGE TREES ALL AROUND.”) Yet every once in a while, as with the egg shown above, the implementors relax and indulge their literary sensibilities a bit. The effect when playing is surprisingly akin to triggering a cut scene in a modern game. Here’s another of those moments from the outdoors, the “CANYON VIEW.”

CANYON VIEW

YOU ARE AT THE TOP OF THE GREAT CANYON

ON ITS WEST WALL. FROM HERE THERE IS A

MARVELOUS VIEW OF THE CANYON AND PARTS

OF THE FRIGID RIVER UPSTREAM. ACROSS THE

CANYON, THE WALLS OF THE WHITE CLIFFS

JOIN THE MIGHTY RAMPARTS OF THE FLATHEAD

MOUNTAINS TO THE EAST. FOLLOWING THE

CANYON UPSTREAM TO THE NORTH, ARAGAIN

FALLS MAY BE SEEN, COMPLETE WITH

RAINBOW. THE MIGHTY FRIGID RIVER FLOWS

OUT FROM A GREAT DARK CAVERN. TO THE

WEST AND SOUTH CAN BE SEEN AN IMMENSE

FOREST, STRETCHING FOR MILES AROUND. A

PATH LEADS NORTHWEST. IT IS POSSIBLE TO

CLIMB DOWN INTO THE CANYON FROM HERE.

Woods created some of the same effect in Adventure as well, most notably with the “BREATH-TAKING VIEW,” but in Zork these “cut scenes” come much more frequently.

There’s not a whole lot more we can do outside at the moment, so we’ll make our way into the house. Going up into its attic brings what may just be the best remembered Infocom trope of all: the grue.

KITCHEN

>U

IT IS PITCH BLACK. YOU ARE LIKELY TO BE

EATEN BY A GRUE.

“Grue” is tossed out from time as the name of a monster (“man, ocular bat, the unusual hoon”) in the Dying Earth story cycle of fantasy and science-fiction writer Jack Vance. However, it’s never really described as anything more than something the characters apparently find very frightening. Lebling, who like Gary Gygax of Dungeons and Dragons fame was a big fan of Vance, borrowed the name and the general idea of a mysterious creature that haunts the dark as a solution to a design problem. Trying to move around or do much of anything in the dark in Adventure would lead the player to fall into a pit in the cave and die. Lebling wanted the same mechanic in Zork, but had the problem that such a death was not always realistic in that game’s more diverse environment; the attic of the house, for instance, was presumably not riddled with sinkholes like the surface of a cave might be. The grue provided a handy, one-size-fits-all solution for any conceivable dark area. In the first build after the grue was added to the PDP-10 Zork, the U.S. News and Dungeon Report that was always kept in the white house mentioned that Bruce Daniels had spent weeks wandering around the underground filling in all of the pits.

Despite its very practical origins, the idea of a deadly slavering creature that no one has ever actually seen — grues die instantly if exposed to light — was immensely appealing to Infocom as both horror and comedy. There’s an almost mythical quality to the grue, as of the unknown monster that every child is convinced lurks under her bed. Grues make appearances in virtually all of their early games, and still live on today in hacker culture — even if one sometimes wishes they wouldn’t, as most of the grue jokes that crop up when one mentions text adventures in the wrong company were stale 25 years ago. You can decide for yourself whether MC Frontalot’s homage belongs in this category. (Personally, I’m more a fan of “The Pr0n Song.”) One final strange fact: my Firefox spell checker knows “grue,” but doesn’t know “Zork.”

Like Adventure‘s well house, the white house will serve as a de facto staging area for our underground explorations, as well as the place where we collect our treasures. Zork‘s trophy case makes this purpose even more explicit.

>W

LIVING ROOM

YOU ARE IN THE LIVING ROOM. THERE IS A

DOOR TO THE EAST, A WOODEN DOOR WITH

STRANGE GOTHIC LETTERING TO THE WEST,

WHICH APPEARS TO BE NAILED SHUT, A

TROPHY CASE, AND A LARGE ORIENTAL RUG IN

THE CENTER OF THE ROOM.

ABOVE THE TROPHY CASE HANGS AN ELVISH

SWORD OF GREAT ANTIQUITY.

A BATTERY-POWERED BRASS LANTERN IS ON

THE TROPHY CASE.

The entrance to the underground in Adventure, you may remember, was through a grate set into the ground in the forest. Zork has a similar grate, but it serves only as an homage to its inspiration and a red herring; the real entrance is right here in the living room, beneath the rug.

>MOVE RUG

WITH A GREAT EFFORT, THE RUG IS MOVED TO

ONE SIDE OF THE ROOM. WITH THE RUG

MOVED, THE DUSTY COVER OF A CLOSED

TRAP-DOOR APPEARS.

>EXAMINE WOODEN DOOR

THE ENGRAVINGS TRANSLATE TO 'THIS SPACE

INTENTIONALLY LEFT BLANK.'

>OPEN TRAP-DOOR

THE DOOR RELUCTANTLY OPENS TO REVEAL A

RICKETY STAIRCASE DESCENDING INTO

DARKNESS.

>D

THE TRAP DOOR CRASHES SHUT, AND YOU HEAR

SOMEONE BARRING IT.

IT IS PITCH BLACK. YOU ARE LIKELY TO BE

EATEN BY A GRUE.

YOUR SWORD IS GLOWING WITH A FAINT BLUE

GLOW.

And so we are underground. We’ll continue our explorations there next time.

							
		
	
		
			
				Exploring Zork, Part 2

				January 20, 2012
			

Today we’ll tackle the meat of Zork‘s Great Underground Empire, shown on the map below.

[image:]

Exploring south from the cellar where we left off yields our second treasure and our first way out of the underground; we can carry exactly two items out with us via the fireplace in the living room of the white house. (But we can’t go back down that way; “ONLY SANTA CLAUS CLIMBS DOWN CHIMNEYS,” the game tells us, in a classic bit of adventure-game logic.) As we explore we’ll continue to find more and more — and more and more convenient — means of ingress and egress. Eventually, even the unknown nasty who keeps closing and barring the trapdoor behind us will stop it.

We also find a second note — oops, an “OWNER’s MANUAL” — south of the cellar. It conveys some of the wonder of this little, functioning world Infocom have constructed.

>EXAMINE PAPER

CONGRATULATIONS!

YOU ARE THE PRIVILEGED OWNER OF A

GENUINE ZORK GREAT UNDERGROUND EMPIRE

(PART I), A SELF CONTAINED AND SELF

MAINTAINING UNIVERSE. IF USED AND

MAINTAINED IN ACCORDANCE WITH NORMAL

OPERATING PRACTICES FOR SMALL UNIVERSES,

ZORK WILL PROVIDE MANY MONTHS OF

TROUBLE-FREE OPERATION. PLEASE CHECK

WITH YOUR DEALER FOR PART II AND OTHER

ALTERNATE UNIVERSES.

Like the title page shown in my previous post, the note also shows that Infocom were also already planning at least a Zork 2 at this stage, even if their naming rubrick could still use some work. More interestingly, it also shows that they were already envisioning parlaying ZIL and the Z-Machine into a whole line of other, original games. In including an advertisement for other games within this one, Infocom were following the lead of Scott Adams, who always seemed to find space to plug one or two other current or upcoming games even within his tiny 16 K creations.

When we proceed north from the cellar, we run into a sort of perfect storm of bad luck.

>N

THE TROLL ROOM

THIS IS A SMALL ROOM WITH PASSAGES TO

THE EAST AND SOUTH AND A FORBIDDING HOLE

LEADING WEST. BLOODSTAINS AND DEEP

SCRATCHES (PERHAPS MADE BY AN AXE) MAR

THE WALLS.

A NASTY-LOOKING TROLL, BRANDISHING A

BLOODY AXE, BLOCKS ALL PASSAGES OUT OF

THE ROOM.

A SEEDY-LOOKING INDIVIDUAL WITH A LARGE

BAG JUST WANDERED THROUGH THE ROOM. ON

THE WAY THROUGH, HE QUIETLY ABSTRACTED

ALL VALUABLES FROM THE ROOM AND FROM

YOUR POSSESSION, MUMBLING SOMETHING

ABOUT "DOING UNTO OTHERS BEFORE.."

THE TROLL'S MIGHTY BLOW DROPS YOU TO

YOUR KNEES.

THE THIEF SLOWLY APPROACHES, STRIKES

LIKE A SNAKE, AND LEAVES YOU WOUNDED.

>KILL TROLL WITH SWORD

I CAN'T SEE ANY SWORD HERE.

>KILL TROLL WITH KNIFE

A GOOD STROKE, BUT IT'S TOO SLOW, THE

TROLL DODGES.

THE TROLL'S AXE REMOVES YOUR HEAD.

IT APPEARS THAT THAT LAST BLOW WAS TOO

MUCH FOR YOU. I'M AFRAID YOU ARE DEAD.

**** YOU HAVE DIED ****

What’s happened here is that we’ve simultaneously met two of the other inhabitants of the underground, the troll and the thief. The former stays in place, but the latter is Zork‘s response to the pirate and the dwarfs of Adventure, a classic Dungeons and Dragons-style “wandering monster.” He roams throughout the underground, and not only takes the occasional poke at us with his stiletto, but — worse — picks up items we might have left here or there for safekeeping and scatters them randomly about. Even worse, he takes treasures for himself, hiding them away (more on that later). And worst of all, he’s happy to steal things off our own person. Woe to the adventurer whom he leaves in the dark without a lamp! In this case, he steals our sword just as we kind of need it to fight him and the troll and all, leaving us with only the much less effective knife. The end result is predictable.

The credit (or blame) for the combat engine belongs to Lebling:

Dave, an old Dungeons and Dragons player, didn’t like the completely predictable ways of killing creatures off. In the original game, for example, one killed a troll by throwing a knife at him; he would catch the knife and gleefully eat it (like anything else you threw at him), but hemorrhage as a result. Dave added basically the full complexity of DD-style fighting, with different strengths for different weapons, wounds, unconsciousness, and death. Each creature had its own set of messages, so a fight with the thief (who uses a stiletto) would be very different from a fight with the troll and his axe.

The danger of all this dynamism and emergent behavior is that it can lead to exactly the sort of thing that just happened to us, where the player is killed capriciously, without ever really having a chance. Eamon players never seemed to mind that sort of thing, but it didn’t sit well with Infocom. They would back well away from randomized combat in later games, a bias that the modern interactive fiction community has generally taken to heart. The main sign of this road not taken in the later Infocom canon is the “DIAGNOSE” verb, introduced in Zork to give the player a quick rundown of her current wounds, which persisted in later games as a rather pointless oddity generally yielding a generic response. Notably, “DIAGNOSE” is the only standard verb of the Infocom system that was not adapted by more modern IF languages like Inform and TADS.

Anyway, we restore a time or two, get a bit more lucky with our die rolls, kill the troll and avoid the thief, and move on into the reservoir area and, eventually, Flood Control Dam #3, one of the more memorable Zork landmarks. The relatively sober descriptions of the grand, long abandoned edifice itself are contrasted with the silliness of the guidebook we find inside the lobby.

>EXAMINE GUIDEBOOK

"FLOOD CONTROL DAM #3

FCD#3 WAS CONSTRUCTED IN YEAR 783 OF

THE GREAT UNDERGROUND EMPIRE TO HARNESS

THE MIGHTY FRIGID RIVER. THIS WORK WAS

SUPPORTED BY A GRANT OF 37 MILLION

ZORKMIDS FROM YOUR OMNIPOTENT LOCAL

TYRANT LORD DIMWIT FLATHEAD THE

EXCESSIVE. THIS IMPRESSIVE STRUCTURE IS

COMPOSED OF 370,000 CUBIC FEET OF

CONCRETE, IS 256 FEET TALL AT THE

CENTER, AND 193 FEET WIDE AT THE TOP.

THE LAKE CREATED BEHIND THE DAM HAS A

VOLUME OF 1.7 BILLION CUBIC FEET, AN

AREA OF 12 MILLION SQUARE FEET, AND A

SHORE LINE OF 36 THOUSAND FEET.

WE WILL NOW POINT OUT SOME OF THE MORE

INTERESTING FEATURES OF FCD#3 AS WE

CONDUCT YOU ON A GUIDED TOUR OF THE

FACILITIES:

1) YOU START YOUR TOUR HERE IN

THE DAM LOBBY. YOU WILL NOTICE ON

YOUR RIGHT THAT

Much of Zork‘s literary character, which comes through quite distinctly despite the relatively limited number of actual words in the game (it’s mostly been the very longest descriptions that I’ve been quoting here), arises from this juxtaposition of melancholic, faded glory and unabashed silliness. I’ll let you decide whether that was a real aesthetic choice or the accidental result of having too many cooks (writers) in the kitchen. In any case, we find another prime example of said silliness in the dam’s maintenance room.

>N

MAINTENANCE ROOM

THIS IS WHAT APPEARS TO HAVE BEEN THE

MAINTENANCE ROOM FOR FLOOD CONTROL DAM

#3. APPARENTLY, THIS ROOM HAS BEEN

RANSACKED RECENTLY, FOR MOST OF THE

VALUABLE EQUIPMENT IS GONE. ON THE WALL

IN FRONT OF YOU IS A GROUP OF BUTTONS,

WHICH ARE LABELLED IN EBCDIC. HOWEVER,

THEY ARE OF DIFFERENT COLORS: BLUE,

YELLOW, BROWN, AND RED. THE DOORS TO

THIS ROOM ARE IN THE WEST AND SOUTH

ENDS.

THERE IS A GROUP OF TOOL CHESTS HERE.

THERE IS A WRENCH HERE.

THERE IS AN OBJECT WHICH LOOKS LIKE A

TUBE OF TOOTHPASTE HERE.

THERE IS A SCREWDRIVER HERE.

The “EBCDIC” reference is a bit of hacker humor that might, depending on your background, require some explanation. During the early 1960s most computer makers agreed on something called ASCII (“American Standard Code for Information Interchange”) as a system for encoding textual characters on computers. Since computers can ultimately understand only numbers, ASCII is essentially a look-up table that the computer can use to know that when it encounters, say, the number 65 in a text file, it should print the character “A” to the screen. A standard was necessary to ensure that computers of different makes and models could easily exchange textual information amongst themselves. Just as everyone had settled on ASCII and thus solved a rather vexing problem, however, IBM suddenly chose to abandon the standard on its mainframes in favor of something called EBCDIC (“Extended Binary-Coded Decimal Interchange Code”). Its reason for doing so, at least according to DEC hackers, was a deliberate effort to make its machines incapable of exchanging data with those from other manufacturers, in the belief that doing so would lock its customers into using only IBM products for absolutely everything. To make things worse, EBCDIC was just a bad system in comparison to ASCII. In ASCII “A” numerically follows “B” which follows “C,” etc.; in EBCDIC each letter is assigned a number willy-nilly, with no apparent rhyme or reason. This makes, say, looping through the alphabet, a scenario that comes up quite often in programming, much more difficult than it ought to be. And then there was IBM’s habit of constantly revising EBCDIC, making it even incompatible with itself in its various versions. Still, it persists even today on the big legacy mainframes. Among hackers, EBCDIC came to stand in for any incomprehensible bit of language or jibberish, the hacker equivalent of saying (with apologies to anyone who actually speaks Greek), “It’s Greek to me!” And that, to make a long explanation not much longer, is the reason that the dam’s buttons are labelled in EBCDIC.

We solve a clever puzzle at the dam to adjust the water level on its two sides, thus opening up the river and the northern part of the underground for exploration. Before we do that, though, we’ll have a look at the temple to the southeast. We find there an ivory torch that, in addition to being a treasure, functions as an inexhaustable light source. This bit of mercy is even more appreciated than the extra batteries we can find in Adventure, particularly since using it doesn’t cost us points. We just need to be sure we conserve enough lantern-life to get us through the coal mine, about which more in a moment.

The sceptre, a treasure we find under the temple in the “EGYPTIAN ROOM,” is at the heart of the first really bad puzzle of the game. We are expected to take it to the rainbow outside and wave it to cross and reveal the inevitable pot of gold.

>WAVE SCEPTRE

SUDDENLY, THE RAINBOW APPEARS TO BECOME

SOLID AND, I VENTURE, WALKABLE (I THINK

THE GIVEAWAY WAS THE STAIRS AND

BANNISTER).

>E

ON THE RAINBOW

YOU ARE ON TOP OF A RAINBOW (I BET YOU

NEVER THOUGHT YOU WOULD WALK ON A

RAINBOW), WITH A MAGNIFICENT VIEW OF THE

FALLS. THE RAINBOW TRAVELS EAST-WEST

HERE.

If you’ve played a few adventure games, of course, you fully expected to walk on that rainbow. The question is how you’re supposed to arrive at this particular way of doing it. The one real hint is external to the game: Adventure featured a rod that it was possible to wave to cross a similar (albeit rainbow-less) chasm. Thus we have yet another point where Zork simply seems to assume previous knowledge of Adventure — although even given that knowledge solving this puzzle requires quite an intuitive leap.

After exploring the region beyond the rainbow, we return underground and eventually wind up in… Hades.

>D

ENTRANCE TO HADES

YOU ARE OUTSIDE A LARGE GATEWAY, ON

WHICH IS INSCRIBED

"ABANDON EVERY HOPE, ALL YE WHO

ENTER HERE."

THE GATE IS OPEN; THROUGH IT YOU CAN SEE

A DESOLATION, WITH A PILE OF MANGLED

BODIES IN ONE CORNER. THOUSANDS OF

VOICES, LAMENTING SOME HIDEOUS FATE, CAN

BE HEARD.

THE WAY THROUGH THE GATE IS BARRED BY

EVIL SPIRITS, WHO JEER AT YOUR ATTEMPTS

TO PASS.

Some of the everything-but-the-kitchen-sink feel that characterized the original PDP-10 Zork also comes through here. For all of the original mythology found in Lord Dimwit Flathead, zorkmids, and Flood Control Dam #3, we’ve also got here Hades from Greek mythology with a Dante paraphrase to boot. (Indeed, this feels more like the Christian Hell than the mythological Hades; its chilling tone provides yet another contrast to the more jokey sections.) Soon enough, we’ll also be meeting a nineteenth-century American coal mine and an Odysseus-fearing cyclops. And we’ve already visited (and plundered) the tomb of Ramses II. There’s of course a puzzle to solved in this Hades as well, but I’ll leave that one to you. Afterward, we’ll return to the vicinity of the dam for a trip down the river.

The Frigid River section was the work of Marc Blank, who added it quite early in Zork‘s development. Its key component is the inflatable boat that we must use to navigate it. This implementation of a vehicle arguably marked the first point where Zork‘s makers really showed their willingness to go beyond their inspiration of Adventure by modeling a much more intricate, believable storyworld. It also brought with it some harsh lessons in design. Tim Anderson:

In the original game, there were rooms, objects, and a player; the player always existed in some room. Vehicles were objects that became, in effect, mobile rooms. This required changes in the (always delicate) interactions among verbs, objects, and rooms (we had to have some way of making “walk” do something reasonable when the player was in the boat). In addition, ever-resourceful Zorkers tried to use the boat anywhere they thought they could. The code for the boat itself was not designed to function outside the river section, but nothing kept the player from carrying the deflated boat to the reservoir and trying to sail across. Eventually the boat was allowed in the reservoir, but the general problem always remained: anything that changes the world you’re modelling changes practically everything in the world you’re modelling.

Although Zork was only a month old, it could already surprise its authors. The boat, due to the details of its implementation, turned into a “bag of holding”: players could put practically anything into it and carry it around, even if the weight of the contents far exceeded what a player was allowed to carry. The boat was two separate objects: the “inflated boat” object contained the objects, but the player carried the “deflated boat” object around. We knew nothing about this: someone finally reported it to us as a bug. As far as I know, the bug is still there.

I wasn’t able to reproduce this bug in this early Apple II implementation. More’s the pity; a bag of holding would be nice to have in this game. (Update: Turns out this bug is still there. I just wasn’t clever enough to figure out how to exploit it. See Nathan’s comment below for the details.)

After the Frigid River, which turns out to connect with the Aragain Falls outdoors, we next explore north beyond the reservoir. The coal mine was the result of the other Zork team members specifically asking Bruce Daniels for “a particularly nasty section.” His response originally involved a huge maze similar to the other huge Zork maze which we’ll get to in my next post. The team decided that enough was enough, however, and edited it down to a fairly manageable four rooms. Tim Anderson nevertheless notes this as “a late example of making things hard by making them tedious.” Still, the coal mine we’re left with actually isn’t all that “nasty.” It has some tricky but manageable puzzles, as long as we aren’t stupid enough to carry an open flame — i.e., the torch — inside. One of the outcomes is a diamond. (In another choice Get Lamp interview, David Welbourn notes how every adventure-game coal mine always seems to contain a diamond; would that it were the same in real life.)

Discounting only the maze area to the west, we’ve now completely explored the underground and solved all of its puzzles but one. We still have the “LOUD ROOM” to deal with.

>D

LOUD ROOM

THIS IS A LARGE ROOM WITH A CEILING

WHICH CANNOT BE DETECTED FROM THE

GROUND. THERE IS A NARROW PASSAGE FROM

EAST TO WEST AND A STONE STAIRWAY

LEADING UPWARD. THE ROOM IS DEAFENINGLY

LOUD WITH AN UNDETERMINED RUSHING SOUND.

THE SOUND SEEMS TO REVERBERATE FROM ALL

OF THE WALLS, MAKING IT DIFFICULT EVEN

TO THINK.

ON THE GROUND IS A LARGE PLATINUM BAR.

>GET BAR

BAR BAR ...

>BAR BAR

BAR BAR ...

>GET BAR BAR

BAR BAR ...

>L

L L ...

>LOOK

LOOK LOOK ...

This room feels like something of a throwback to more primitive games whose two-word parsers and limited world models forced them to replace relatively sophisticated environmental puzzles with guess-the-word games. The Zork team had specifically wanted to avoid the pitfalls of the early parsers with their frustrating non-specificity. Blank, speaking of Adventure: “It really bothered us that if you said ‘Take bird’ it would put the bird in the cage for you–sort of doing things behind your back.” All of which makes this puzzle and its solution — “ECHO” — feel like the betrayal of an ideal of sorts.

But its frustrations are nothing compared to the maze, one of the largest and nastiest of its type in adventure-game history. We’ll tackle that monster, and finish up, next time.

							
		
	
		
			
				Exploring Zork, Part 3

				January 22, 2012
			

Today we’ll finish up with Zork. That means plunging into the only big, completely traditional maze in the Infocom canon. And it’s a nasty one; apparently they decided that if you’re only going to do one, you might as well do it up right.

[image:]

In keeping with the thief’s role as a stand-in for Adventure‘s pirate, the maze is where he has his lair. This fact, even more than its sheer size, is the root of its difficulty: as you wander about inside dropping items and mapping, chances are good that the thief will show up to scatter your carefully placed items about and leave you hopefully confused. Like the combat sequences, success here requires luck and careful saving and restoring more than skill. Nowhere else does Zork so thoroughly justify Robb Sherwin’s statement that it “hates its player.”

Within the maze is the “CYCLOPS ROOM.”

SE

CYCLOPS ROOM

THIS ROOM HAS AN EXIT ON THE NORTHWEST,

AND A STAIRCASE LEADING UP.

A CYCLOPS, WHO LOOKS PREPARED TO EAT

HORSES (MUCH LESS MERE ADVENTURERS),

BLOCKS THE STAIRCASE. FROM HIS STATE OF

HEALTH, AND THE BLOODSTAINS ON THE

WALLS, YOU GATHER THAT HE IS NOT VERY

FRIENDLY, THOUGH HE LIKES PEOPLE.

There are two possible solutions to the cyclops problem, one basically acceptable and one easily the worst in the game. For the former, we can give him the lunch we found in the house at the beginning of the game, followed by the bottle of water. The latter is another guess-the-word affair that makes the loud room look like design genius: we can type “ODYSSEUS.”

ODYSSEUS

THE CYCLOPS, HEARING THE NAME OF HIS

FATHER'S DEADLY NEMESIS, FLEES THE ROOM

BY KNOCKING DOWN THE WALL ON THE EAST OF

THE ROOM.

But never fear, there is a “clue” to this solution. Reading a prayer book we found in the temple yields the following:

EXAMINE BOOK

COMMANDMENT #12592

OH YE WHO GO ABOUT SAYING UNTO EACH:

"HELLO SAILOR":

DOST THOU KNOW THE MAGNITUDE OF THY SIN

BEFORE THE GODS?

YEA, VERILY, THOU SHALT BE GROUND

BETWEEN TWO STONES.

SHALL THE ANGRY GODS CAST THY BODY INTO

THE WHIRLPOOL?

SURELY, THY EYE SHALL BE PUT OUT WITH A

SHARP STICK!

EVEN UNTO THE ENDS OF THE EARTH SHALT

THOU WANDER AND

UNTO THE LAND OF THE DEAD SHALT THOU BE

SENT AT LAST.

SURELY THOU SHALT REPENT OF THY CUNNING.

On the original PDP-10 implementation, reading the first letter of each line yields “ODYSSEUS.” On the 40-column Apple II screen, however, this rather breaks down. It’s an awful “puzzle,” but the fact that Infocom give the player a more reasonable alternative really marks them, for all their continuing design pratfalls, as unusual text-adventure developers for this era. Scott Adams or Roberta Williams would have just stuck the easy-to-implement “ODYSSEUS” puzzle in and dreamed of all the hint booklets they were about to sell.

Beyond the cyclops lies the thief’s lair. Giving him his reckoning feels sweet indeed after all the trouble he’s caused us, not to mention restoring to us whatever treasures he’s stolen.

U

YOU HEAR A SCREAM OF ANGUISH AS YOU

VIOLATE THE ROBBER'S HIDEAWAY. USING

PASSAGES UNKNOWN TO YOU, HE RUSHES TO

ITS DEFENSE.

THE THIEF GESTURES MYSTERIOUSLY, AND THE

TREASURES IN THE ROOM SUDDENLY VANISH.

TREASURE ROOM

THIS IS A LARGE ROOM, WHOSE EAST WALL IS

SOLID GRANITE. A NUMBER OF DISCARDED

BAGS, WHICH CRUMBLE AT YOUR TOUCH, ARE

SCATTERED ABOUT ON THE FLOOR. THERE IS

AN EXIT DOWN A STAIRCASE.

THERE IS A SUSPICIOUS-LOOKING

INDIVIDUAL, HOLDING A BAG, LEANING

AGAINST ONE WALL. HE IS ARMED WITH A

VICIOUS-LOOKING STILETTO.

THERE IS A SILVER CHALICE, INTRICATELY

ENGRAVED, HERE.

THE THIEF RAMS THE HAFT OF HIS BLADE

INTO YOUR STOMACH, LEAVING YOU OUT OF

BREATH.

>KILL THIEF WITH AXE

YOU ARE STILL RECOVERING FROM THAT LAST

BLOW, SO YOUR ATTACK IS INEFFECTIVE.

YOU PARRY A LIGHTNING THRUST, AND THE

THIEF SALUTES YOU WITH A GRIM NOD.

>KILL THIEF WITH AXE

THE THIEF IS STRUCK ON THE ARM, BLOOD

BEGINS TO TRICKLE DOWN.

THE THIEF STABS NONCHALANTLY WITH HIS

STILETTO AND MISSES.

>AGAIN

THE BLOW LANDS, MAKING A SHALLOW GASH IN

THE THIEF'S ARM!

THE THIEF TRIES TO SNEAK PAST YOUR

GUARD, BUT YOU TWIST AWAY.

>AGAIN

THE BLOW LANDS, MAKING A SHALLOW GASH IN

THE THIEF'S ARM!

THE THIEF SLOWLY APPROACHES, STRIKES

LIKE A SNAKE, AND LEAVES YOU WOUNDED.

>AGAIN

THE THIEF IS STRUCK ON THE ARM, BLOOD

BEGINS TO TRICKLE DOWN.

THE THIEF STABS NONCHALANTLY WITH HIS

STILETTO AND MISSES.

>AGAIN

YOU CHARGE, BUT THE THIEF JUMPS NIMBLY

ASIDE.

THE THIEF STABS NONCHALANTLY WITH HIS

STILETTO AND MISSES.

>AGAIN

THE FATAL BLOW STRIKES THE THIEF SQUARE

IN THE HEART: HE DIES.

But wait… remember when I mentioned way back at the beginning of this adventure that the jeweled egg we found in the forest was key to the cruelest puzzle in the game? Well, I’m afraid we need to get the thief to do something for us before we kill him. We need to let him open the egg for us, for, as subtly hinted when we try to do it ourselves, we “HAVEN’T THE TOOLS OR EXPERTISE.”

With the maze explored and the thief employed and then promptly dispatched, we face only one last puzzle — but it’s another nasty one, a late addition that we could just as well have done without. From time to time while wandering in the forest, we “HEAR IN THE DISTANCE THE CHIRPING OF A SONG BIRD,” a message originally included as just a bit of flavor text. Tim Anderson:

Many people on the net had long since solved the game, but went back in and did any new problems that came along; one of them had played DD with Dave, and called him up about a day after the egg was announced. "I've gotten the egg opened, but I assume you losers have some nonsense where you do something with the canary and the songbird. Dave, no fool, said "Cough, cough, ahem, of course," and immediately went off and added the brass bauble.

Specifically, we need to wind the clockwork canary we found inside the egg to attract the songbird, which in turn drops a brass bauble at our feet — the 19th and final treasure. We place the lot in the trophy case, which magically opens up a new path outside.

SW

STONE BARROW

YOU ARE STANDING IN FRONT OF A MASSIVE

BARROW OF STONE. IN THE EAST FACE IS A

HUGE STONE DOOR WHICH IS OPEN. YOU

CANNOT SEE INTO THE DARK OF THE TOMB.

>W

AS YOU ENTER THE BARROW, THE DOOR CLOSES

INEXORABLY BEHIND YOU. AROUND YOU IT IS

DARK, BUT AHEAD IS AN ENORMOUS CAVERN,

BRIGHTLY LIT. THROUGH ITS CENTER RUNS A

WIDE STREAM. SPANNING THE STREAM IS A

SMALL WOODEN FOOTBRIDGE, AND BEYOND A

PATH LEADS INTO A DARK TUNNEL. ABOVE THE

BRIDGE, FLOATING IN THE AIR, IS A LARGE

SIGN. IT READS: ALL YE WHO STAND BEFORE

THIS BRIDGE HAVE COMPLETED A GREAT AND

PERILOUS ADVENTURE WHICH HAS TESTED YOUR

WIT AND COURAGE. YOU HAVE GAINED THE

MASTERY OF THE FIRST PART OF THE GREAT

UNDERGROUND EMPIRE. THOSE WHO PASS OVER

THIS BRIDGE MUST BE PREPARED TO

UNDERTAKE AN EVEN GREATER ADVENTURE THAT

WILL SEVERELY TEST YOUR SKILL AND

BRAVERY!

 PLAY "ZORK: THE GREAT UNDERGROUND

EMPIRE, PART II".

YOUR SCORE WOULD BE 350 (TOTAL OF 350

POINTS), IN 1313 MOVES.

THIS SCORE GIVES YOU THE RANK OF MASTER

ADVENTURER.

And that, my friends, is Zork, a flawed creation but a tremendous advance over what had come before. And Infocom were just getting started.

I’ll have much, much more to say about Infocom in the future. But next, something completely different.

							
		
	OEBPS/assets/2011-12-akalabeth4.png

OEBPS/assets/2011-08-simulation_chart-e1313326252160.png
OdschootTan L Pintandclek
Rotunlkes OW-Schaot 8761 Advanturs M Aaverarer

Simulation SetPace Desien

OEBPS/assets/2011-09-001_000000008.png
IRUN

READ_ INSTRUCTIONS, 'T' TO
EAD IT

OEBPS/assets/2011-09-004_000000000.png
UHERE vOU

OEBPS/assets/2011-11-Prisoner-The-_000000006.png
THE LIBRARY

OEBPS/assets/2011-11-Prisoner-The-_000000007.png
WHY YOU RESIGNED. THE CODE

THE
conpany

OEBPS/assets/2011-09-slots-300x168.jpg

OEBPS/assets/2011-10-Wizard_blur.png

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000001.png

OEBPS/assets/2011-10-AppleWin_ScreenShot_0000000011.png
TAIL SEENS TO GE CAUGHT UNDER f
ARE_IN_THE_DESERT

OEBPS/assets/2012-01-map-8-190x300.jpg

OEBPS/assets/2011-11-Prisoner-The-_000000005.png
* * Ad

CIES .
> nomo
. [XN

e e ©
(R R
R e
Rt
Rt
e & »
R
R
oo O
€ e e
€ 0owogt
“n w o
© e vene
< Yo e
ER Tt]
e one pRryYy

OEBPS/assets/2011-12-escape.png
3

ol HALE @ Pace

OEBPS/assets/2011-09-model3-300x300.jpg

OEBPS/assets/2011-11-Prisoner-The-_000000010.png
ST
e EET
S — [—

OEBPS/assets/2011-09-001_000000003.png
DEPOSIT OR

\PON SHOP FOR WEAPONS
TO TEACH vOU SONE

1624

CHIT THE KEY FOR YOUR CHOICE.

ND HE COMES
uaNT

(HIZ "D’ FOR DEFOSIT, 'W' FOR MITHDRAHL)

OEBPS/assets/2012-01-map-2-3-300x229.jpg

OEBPS/assets/2011-11-Prisoner-The-_000000004.png

OEBPS/assets/cover.jpg
. .‘.
arenes,
hadsn ',

rerthyes

ume2: 1980

J

1

A

L
-
-

gi

=27
VOl

e

1l

L

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000007.png

OEBPS/assets/2011-11-Prisoner-The-_000000018.png
TOMN HALL

DEATHS

OEBPS/assets/2011-12-garriott-229x300.jpg

OEBPS/assets/2011-09-model2-300x252.jpg

OEBPS/assets/2011-12-Lick-Vezza.jpg

OEBPS/assets/2011-09-0049.png
JGH: HERE 15 THE BUESTION: WHAT IS ARTZ
ANSHER CAREFULLY, FR MAHER

1R HRHER: BEAUTY

IR ZERQUGH: YOU ARE HAKING & FUNDANENTAL MISTAKE;
'R WHER. AFTER AL, MOST PEDPLE AGREE

THAT CERTAIN NATURAL PHENOWENA SUCH S SUNSETS ARE BEAUTIFUL,
VET UE DON'T CALL THEW AT, BECAUSE THERE 15 NO

READILY IDENTIFIGELE ARTIST. ART NAY, IN FACT, E
BEAUTIFUL, BUT THERE 15 NO NECESSARY CONNCTION BETHEEN ART
AND BERUTY.

171 AFRAID UE MUST FAIL YOU IN THIS EXAN. GOOD

LUCK WITH THE FLONER ARRANGING CLASSES.

(PRESS ~ENTER- TO CONTINUE.>_

OEBPS/assets/2011-08-0042.png
MR MAHER: SORRY, 1 DO HOT

ADNIRAL KURTZ: NOT SURFRISING, SINCE THERE IS NO SUCH PERSON.
BUT THERE 15 ALSO ND SPTH FLIGHT WING, N DUSSELDORF OR
ANVAHERE ELSE. VET YO, COLONEL, LET ME SUGGEST THAT

THERE US|

I BELIEVE THAT YOU ARE AN INPOSTER, COLONEL,

AND LHILE YOU HAVE BEEN A CHARNING DINWER CONPANION, 1
REGRET THAT 1 MUST PLACE VDU UNIER ARREST.

UARDS!! ARREST THIS M. HE 1S AN ENEMY OF THE REICH.

VOU ARE TRAGGED AAY BY SOLDIERS WEARING THE IREADED
JEATH'S HEAD INSIGNIA OF 5.5. ON THEIR SINISTER BLACK
UNIFORNS, AND AT DAHN YOU ARE EXECUTED.

(PRESS ~ENTER- TO CONTINUE.>_

OEBPS/assets/2011-11-Prisoner-The-_000000000.png
RESIGNATION CODE:943

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000001.bmp.png
1 e d

e

N

OEBPS/assets/2011-09-006_000000000.png
45 YOU LEFT THE MAIN HALL, YOU SUDDENLY
FELT A QUEER WRENCH IN YOUR STOMACH. S
IF YOU HAD BEEN TURNED INSIDE-OUT, THEN
RIGHT AGAIN. WHEN THINGS BECAME CLEAR
AGATN. YOU FOUND YOURSELF AT THE HELM OF
A SPACESHIP! YOU REALIZE YOU HAUE GONE
THROUGH A REALITY SHIFT!

CHIT ANY KEY TO CONTINUE> W

OEBPS/assets/2011-08-adventureland-e1314310022580.jpg

OEBPS/assets/2011-12-akalabeth5.png
CPRESS SPACE TO CONTINUEE

OEBPS/assets/2011-12-akalabeth7.png

OEBPS/assets/2011-09-0048.png
THE LADY: WELL, THAT?S SOMETHING, I GUESS.

JIWAYE CAN T BUY YOU SONE ICE CREAN?

THE LADV: GOODY! I LOVE ICE CREAMI JUST FEED HE
NOCHA FUDGE, AND 1’LL 10 ANYTHING vOU SAY

THE LAY, OBYIOUSLY INTERESTED IN YO, AGREES T0 GO OFF T0 A
POETRY READING AT THE NO-NANE CAFE. BY THE END OF THE DAY YOU
ARE VERY VERY G00D FRIENTS.

A LEEK LATER, HAVING THROLIN YOUR PREVIOUS LIVES T0 THE

UINDS, VDU ARE LYING ON THE BEACH WITH HER IN BALL, WHERE vOU
REWALN FOREVER IN A STATE OF COSMIC BLISS.

(PRESS ~ENTER- TO CONTINUE.>_

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000009.png
Helcons o

OEBPS/assets/2011-08-0046.png
ADMIRAL KURTZ: PLEASE DO HOT BEAT AROUND THE BUSH,
TIVE 15 INFORTANT. 1 HAVE A DATE WITH A EEALTIFUL
TANK COMWANDER . . . 1 MEAW, A BEAUTIFUL FRAULEIN.
ACCEPT THE ASSIGNTENT OR NOT?

R TEHER: YES

ADMIRAL KLRT

VERY GOODI 1 VE VILL START TONORROH.

COLOAEL.
vounG
uILL vou

S0 YOU SPEND THE REST OF THE WAR WITH THIS CORMUCOIA OF
MILITARY INTELLIGENCE. YOUR CONTRIBUTION TO THE HaR EFFORT

IS LATER CHARACTERIZED BY GENERAL EISENHOMER A5
INVALURBLE, AND AFTER V- DAY V0L ARE REWARIED BY

A GRATEFUL AMERICAN GOVERNENENT HITH A ENORWOUS PENSION.

(PRESS ~ENTER- TO CONTINUE.>_

OEBPS/assets/2011-11-Prisoner-The-_000000011.png

OEBPS/assets/2011-08-ghosttown-e1314310082383.jpg

OEBPS/assets/2011-08-0041.png
VOURSELF=
(COLONEL. BRAUN 1S, OF COURSE, REALLY JINNY HAHER.>
R HRHER: VERY WUCH: THANK YOU.

AINIRAL KURTZ: S0 GLAD T0 HEAR IT, COLOMEL.

TELL ME-~1 UNIERSTAND YOU ARE WITH THE S7TH FLIGHT

JING IN TUSSELDORF. D0 YOU HAPREN TO KNOW THERE @ CAPTAIN
EIIERDOHN? HE 1S AN OLD SCHODL COMRATE.

CRGAIN HE FIXES VOU UITH HIS ICY GAZE. VMY IS HE ASKING YOU
THIS? IS IT SONE SORT OF TRAP? YOU LISH YOU HAD VOLUNTEERED
FOR SONETHING SAFER LIKE SUBMRINES.)

MR MAHER: _

OEBPS/assets/2011-10-AppleWin_ScreenShot_0000000031.png
Look noTE

OEBPS/assets/2011-12-AppleWin_ScreenShot_000000000.png
SHALT TRY TO BECONE A

REes —ePACE- TO CONT B

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000012.png
STONE STEPS

A NDORERVACK

OEBPS/assets/2012-01-infocom1979-300x178.jpg

OEBPS/assets/2011-11-Prisoner-The-_0000000001.png

OEBPS/assets/2011-08-0040.png
EVERYTHING GOES PERFECTLY AND vOU ARE SURE vOUR COVER
15 COMPLETELY SECURE_ UNTIL ONE EVENING YOU FIND YOURSELF SEATED,
AT A SUNPTUOUS FULL-IRESS DINWER: DIRECTLY ACROSS THE TABLE FRON
THE DREAIED ADNIRAL KURTZ, CHIEF OF THE GESTAFO.

ME FIXES VOU WITH A PENETRATING ICY-ELUE EVE, AND FOR

THE FIRST TINE YOU FIND YOURSELF BEGINNING TO WORRY. DOES HE
(O HHO V0L REALLY ARE? DOES HE SUSPECT?

ADNIRAL KURTZ: UND SO, COLONEL ERAUN, YOU ARE ENJOYING
VOLRSELF?

(COLONEL. BRAUN 1S, OF COURSE, REALLY JINNY HAHER.>

R e

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000006.png

OEBPS/assets/2011-12-AppleWin_ScreenShot_000000001.png

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000007.png
BTCET CAND

OEBPS/assets/2011-09-001_000000000.png
YOU ARE IN THE OUTER CHAMBER OF THE
4ALL OF THE GUILD OF FREE ADUENTURERS
NANY HEN AND HOMEN ARE GUZZLING BEER

AND THERE 1S LOUD SINGING AND LAUGHTER

ON THE NORTH SIDE OF THE CHANBER IS
A CUBBYHOLE WITH A DESK. OUER THE DESK
IS A SIGN WHICH SAYS 'REGISTER HERE

0R ELSE!"

00 YOU GO OUER TO THE DESK OR JOIN THE
HEN DRINKING THE BEER?
CHIT ‘D FOR DESK OR

ok MENS

OEBPS/assets/2011-10-AppleWin_ScreenShot_0000000001.png

OEBPS/assets/2011-08-0032.png
I'm behind the counter. Visible items

Sig"Rind for RODM servics!

Sone chvicus exits aret NORTH

uhat 4o do? GO COUNTER

Whst o do? GET CASHEOK

What o da? LOOK CASHBOX

I see
nothing specisl
s Tell me uhat %o do?

OEBPS/assets/2011-09-006_000000001.png
BY SEARCHING HEW "HMEMORIES®. —vou FIND
OUT YOUR SITUATION. WHICH ISN'T GOOD

Y0U ARE ABOARD THE WILLENIUN FALCON
UHICH HAS JUST BEEN DRAGGED INTO THE
ENPIRE'S EUIL WACHINE OF DESTRUCTION. THE
DEATH STAR! TO ESCAPE, YOU WILL HAUE TO
FIND DESTROY THE EQUIPHENT IN EITHER THE
TRACTOR BEAN HACHINERY SECTION. OR THE
POMER HACHINERY ROOM

Y0U ARE EQUIPPED WITH A LIGHT-SABRE

CHIT ANy KEY TO CONTINUE S

OEBPS/assets/2011-08-0033.png
I am in a TeledraPh office. Visible items

TeletiaPh ked. SPliced wire. Larde safe.

Sone chvious exits aret SOUTH

o
I see
nothing specisl
> Tell me uhat to do? TYPE
I dor’t know how %o "TYPE" zomething
> Tell me uhat to do? PUSH KEY

Clisk
SPARKL % % % *

OEBPS/assets/2011-09-coco1-300x300.jpg

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000002.png
YOUR COMMAND7SAY HI
o

DOOR ON THE EAST SIDE OF THE ROOM
ok

OUR COMMANDT

OEBPS/assets/2011-09-001_000000002.png
HOP FOR HEAPONS

TO TEACH vOU SONE

YOU NOW WANDER INTO THE HAIN HALL

DEPOSIT OR

-em

CHIT THE KEY FOR YOUR CHOICE.

OEBPS/assets/2011-12-akalabeth2.png
AKALABETH!

BEHARE.
HORLD OF
FooLIsH
Do 1
HORTAL,
vou B0y
TRESPASS, EERrran

.

OEBPS/assets/2011-12-akalabethcomputerland-art-255x300.jpg
d adventure lies

& qame of fantasy, cunning, ond donqer

10 different Hi-Res Monsters
combined wi

perfect perspec-
Live and infinite dungeon levels

create the world of Akalabeth.

for Apple I 4ok and Agplesoft RO.M.

OEBPS/assets/2011-09-brown.jpg

OEBPS/assets/2011-08-count-e1314310058873.jpg

OEBPS/assets/2011-10-AppleWin_ScreenShot_0000000021.png
L

OEBPS/assets/2011-09-001_000000006.png
A CUBBYHOLE WITH A DESK. OUER THE DESK
IS A SIGN WHICH SAYS 'REGISTER HERE
0R ELSE!"

00 YOU GO OUER TO THE DESK OR JOIN THE
HEN DRINKING THE BEER?
CHIT 'D' FOR DESK OR

FOR WEN) O

VOU ARE GREETED THERE BY A BURLY
IRISHHAN HHO LOOKS AT YOU WITH A SCOML
AND ASKS YOU, 'HHAT'S YOUR NAME?

*0U GIVE 1

1 YOUR NAME CTYPE IT IN NOW)
E_HIM

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000000.png

OEBPS/assets/2011-10-paddles-300x199.jpg

OEBPS/assets/2011-11-1979_AppleII-2-217x300.jpg

OEBPS/assets/2011-08-0043.png
IR MAHER: 1 HOT OHLY KHOW HIM. 1 LOVE HIMY

ADNIRAL KURTZ: NOT SURFRISING, SINCE THERE IS NO SUCH PERSON.
BUT THERE 15 ALSO ND SPTH FLIGHT WING, N DUSSELDORF OR
ANVAHERE ELSE. VET YO, COLONEL, LET ME SUGGEST THAT

THERE US|

I BELIEVE THAT YOU ARE AN INPOSTER, COLONEL,

AND LHILE YOU HAVE BEEN A CHARNING DINWER CONPANION, 1
REGRET THAT 1 MUST PLACE VDU UNIER ARREST.

UARDS!! ARREST THIS M. HE 1S AN ENEMY OF THE REICH.

VOU ARE TRAGGED AAY BY SOLDIERS WEARING THE IREADED
JEATH'S HEAD INSIGNIA OF 5.5. ON THEIR SINISTER BLACK
UNIFORNS, AND AT DAHN YOU ARE EXECUTED.

(PRESS ~ENTER- TO CONTINUE.>_

OEBPS/assets/2011-09-0050.png
OU FLY ON T0 THE LATITULE AND LONGITULE OF CHICAGO, BUT STILL
THERE 1S ONLY OCEAN BELON YOU AND SILENCE ON ALL THE RADID
BevS.

DU DECIIE IT 15 TINE TO NAKE SONE SORT OF APPROFRIATE
AWNOUNCENENT 70 THE PASSENGERS. YOU SWITCH ON THE P.A. SYSTEN
AND PICK UP THE MICRIPHOE.

CAPTAIN WAHER: | LE AFPERR TO HAVE . .
BEFORE YOU CAN FINISH SPEAKING THE ENTIRE AIRPLANE, INCLUDING
DU, THE CREH AND THE PASSENGERS: VANISHES UTTERLY, LEAVING
OWLY THE STRANGE AND EFPTY SEA.

(FRESS -ENTER- TO CONTINUE. >

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000005.png

OEBPS/assets/2011-09-001_000000004.png
HOP FOR HEAPONS

TO TEACH vOU SONE

CENTER_THE AMOUNT YOU WANT TO DEPOSIT)

DEPOSIT OR

eom

CHIT THE KEY FOR YOUR CHOTCE .

OEBPS/assets/2011-09-001_000000007.png
ALL DAY AND ALL HNIGHT IS FER LESSER MEN

HE EUENTUALLY LOOKS AT YOU AND SAYS,
‘VER NAME'S NA IN HERE. HAUE YE GIUEN
IT TO HE ARIGHT?"
HOM DO YOU ANSHER CHIT 'v' OR ‘N> ¥
HE HITS HIS FOREHEAD AND SAYS. 'AH
VE WUST BE NEW HERE! WELL, WAIT JUST
A WINUTE AND 1'LL BRING SOMEONE OUT TO
TAKE CARE OF VE.®

OEBPS/assets/2011-09-schlock-223x300.jpg
RADIO SHACK TACKLES
ITS ‘SCHLOCK’ IMAGE

ctos v e
DiMocRArS PARTY

s O

sanowons B©

MACHTON Succss
WAC TG T
o W

OEBPS/assets/2011-11-1979AppleII-227x300.jpg

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000010.png

OEBPS/assets/2011-10-AppleWin_ScreenShot_0000000012.png
‘BEncH oF an

o
2

OEBPS/assets/2011-09-0047.png
'T_THE CORMER JUST AHEAD OF YOU SHE HITS A SLIPPERY
SPOT AND FALLS — GRACEFULLY ENOUGH, BUT SHE TROPS THE EODKS SHE
S BEEN CARRYVING. 1T 15 THE OFPORTUNITY YU HAVE BEEN

UAITING FOR, FERHAPS THE OPFORTUNITY OF A LIFETINE.

VDU SPRING FORUARD AND RETRIEVE HER BUOKS S SHE PICKS

ERSELF UP. YO NOTICE THAT ONE OF THE BODKS IS “COUPLES"

BY JOAN UPRIKE.

JIWAYE HERE YOU 6RE HISS.
THE LATY: THANK VoL

(HER EXPRESSION 15 NEITHER ENCOURAGING NOR OTHERMISE.
YDUR NEXT REWARK Y MAKE ALL THE DIFFERENCE.)

s

OEBPS/assets/2011-10-WizardPrincess_000000000.png

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000008.png
FALN

OEBPS/assets/2011-08-0034.png
I am in a Drd Goods store. Visikle items

Horsashos. Larde bell. ¥SILVER BULLET.
FGOLDEN TERRINGERY. Si%n. ASILVER SPURSK. Stetson hat,
Swall ked. Ked of Sumbeuder. Nails. Hammer.

Sone chvicus exits aret NORTH

Sorvd 1 car’t
(EG dosent ssem to do it!
> Tell e uhat to do? FILL KEG

oK
ith unat?
5 Tell me uhat ta do? HITH GUNPORDER

o

 Tell me what to do? _

OEBPS/assets/2011-12-Akalabeth-1980_000000000.png
CaMMaNDT

A

OEBPS/assets/2012-01-zork.png
THE GREAT UNDERGROUND. EMPIRE

aLL

e
1
4

580 BY INFOCOM,
1
!

y
i
IS A SHALL MAILBOX HERE

OEBPS/assets/2011-09-001_000000009.png
INSERT DISKETTE WITH ADUENTURE COR KEEP
THIS DISKETTE FOR BEGINNERS CAUE) IN
DISK DRIVE IN SLOT SIX, DRIVE ONE THEN
4T C

OEBPS/assets/2011-11-Prisoner-The-_000000001.png
TYPE U.D.L OR R

OEBPS/assets/2011-10-AppleWin_ScreenShot_0000000002.png

OEBPS/assets/2011-09-001_000000005.png
A CUBBYHOLE WITH A DESK. OUER THE DESK
IS A SIGN WHICH SAYS 'REGISTER HERE
0R ELSE!"

00 YOU GO OUER TO THE DESK OR JOIN THE
HEN DRINKING THE BEER?
CHIT 'D' FOR DESK OR

FOR WEN)

AS YO GO OUER TO THE NEN. VOU FEEL
A SHORD BEING THRUST THROUGH YOUR BACK
AND YOU HEAR SOMEONE SAY, 'YOU REALLY
MUST LEARN TO FOLLON DIRECTIONS!®

.

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000001.png
HUHT,

troLLsrire

COUR COMMANDT

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000004.png
YOUR COMMANDTN

urh Passace

HERWIT 1S HERE

VOUR COMNAND?EXANINE

HIDDEN TUNNEL GOING OFF TO

urh Passace

HERWIT 1S HERE

COUR COMMANDT

OEBPS/assets/2011-11-Prisoner-The-_000000012.png
FREEDON

PSYNTAX ERROR IN 943

OEBPS/assets/2011-11-Prisoner-The-_000000024.png
FREEDON!

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000003.png
 ENTER COMMANDoR

OEBPS/assets/2011-11-Prisoner-The-_000000022.png
oW THE PRESS

YOUR TvPE

w

set

OEBPS/assets/2011-12-akalabeth1.png
MELCOME, FOOLISH HORTAL
INTO THE WORLD
e
HEREIN THOU SHALT FIND GRAND
T

CREATED BY LORD BRITISH
(> 1980 BY CALIFORNIA PACIFIC CONPUTER

INSTRUETIONS CY/N> 7Y
CPRESS SPACE TO CONTINUE)

OEBPS/assets/2011-09-jobswoz.jpg

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000000.png

OEBPS/assets/2011-12-akalabeth3.png

OEBPS/assets/2011-08-0044.png
CRGAIN HE FIXES VOU UITH HIS ICY GAZE. VMY IS HE ASKING YOU
THIS? IS IT SONE SORT OF TRAP? YOU LISH YOU HAD VOLUNTEERED
FOR SONETHING SAFER LIKE SUBMRINES.)

R HHER: THERE 15 NO S7TH FLIGHT UING

ADNIRAL KURTZ: ABSOLUTELY RIGHT! I VAS JUST TESTING vou
A LITTLE, 1 HOPE YOU HILL FORGIVE THE FORTALITY. YOU SEE
Y BOY, 1 LIKE YOUR LODKS. VDU ARE THE VERY PERSON 1 HAVE
BEEN LOOKING FOR T BECOE NY PERSONAL CORIER.

I HAVE MY TOP-GECRET DOCUNENTS AND 1 KN

INSTINCTIVELY 1 CAN TRUST YU T0 DELIVER THEM WHEREVER
I'NEED. | VOU ILL ACCEPT THIS ASSIGHIENT?

MR MAHER: _

OEBPS/assets/2011-10-versawriter-1-300x226.jpg
7 2t
i

—_——

OEBPS/assets/2011-11-Prisoner-The-_000000026.png
AT

 WIN 15 TO L

T

OEBPS/assets/2012-01-map-4-5-6-7-196x300.jpg

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000004.png
VALUABLE
JEWELS ARE
HIDDEN IN THIS
HOUSE.

FINDERS-KEEPERS.

OEBPS/assets/2011-08-0031.png
I am in a Drd Goods store. Visikle items

Shovel. Matohes. Conpass. Sidh.

Sone chvicus exits aret NORTH

Sarvd 1 can’t
I'm not Alice!
> Tell me uhat 4o do? S

o

o
oK.
Drch ATREASLRESK then SCORE

+ Tell me what to do? _

5 Tell me uhat to do? GO STORE

> Tell me uhat to do? READ SIGH

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000002.png

OEBPS/assets/2011-10-AppleWin_ScreenShot_000000009.png
THERE 15 A

OEBPS/assets/2011-08-0045.png
ADMIRAL KURTZ: ABSOLUTELY RIGHT! I VAS JUST TESTING YOU
A LITTLE, 1 HOPE YOU HILL FORGIVE THE FORTALITY. YOU SEE
Y BOY, 1 LIKE YOUR LODKS. VDU ARE THE VERY PERSON 1 HAVE
BEEN LOOKING FOR T BECOE NY PERSONAL CORIER.

I HAVE MY TOP-GECRET DOCUNENTS AND 1 KN

INSTINCTIVELY 1 CAN TRUST YU T0 DELIVER THEM WHEREVER
I'NEED. | VOU ILL ACCEPT THIS ASSIGHIENT?

R WHER: 1 WOULD BE HONORED

AINIRAL KURTZ: PLEASE D0 NOT BEAT ARDLND THE BUSH, COLONEL.
TIVE 1S INFORTANT. I HAVE A DATE WITH A BEAUTIFUL YOUNG
TANK COMVANDER . . . 1 WEAW, A BEAUTIFUL FRAULEIN. WILL YOU
ACCEPT THE ASSIGNTENT OR NOT?

MR MAHER: _

OEBPS/assets/2011-12-zork-211x300.jpg

OEBPS/assets/2011-09-logopos2-252x300.jpg

OEBPS/assets/2011-11-Prisoner-The-_000000021.png

OEBPS/assets/2011-12-U0box-232x300.jpg

OEBPS/assets/2011-10-ken_and_roberta.jpg

OEBPS/assets/2011-08-0039.png
IT IS THE DARK WINTER OF 1942. FROM THE ENGLISH
CHANNEL TO THE CAUCASUS THE NAZI EAGLE HOLDS ELRDPE IN A GRIP
OF TR

V0L ARE JINHY HAHER, AN AHERICAN UORKING FOR

THE 0.5.5., OUR TOP-SECRET SPY AGENCY.

VOU HAVE BEEN PARACHUTED INTO THE HEART OF HITLER’S

THIRD REICH, WHERE YOUR MISSION IS TO GATHER INFORATION,
HDLEVER YOU Cai.

EBONALR AND RESOURCEFUL, YOU HAVE NO TROUBLE

COMVINCING THE BAZLS THAT YOU ARE COLONEL HANS ERAN, MUCH-
DECORATED LUFTUAFFE IR ACE. VDU NOVE FREELY IN THE HIGHEST
LEVELS OF HAZI SOCIETY, WHERE VOU ARE PRIVY

T0 ASTOUNDING NAZI SECRETS, ALL OF WHICH YOU RADIO BACK TO
UASHINGTON.

(PRESS ~ENTER- TO CONTINUE.>_

OEBPS/assets/2011-11-Prisoner-The-_000000014.png
Lives

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000003.png
ESS AND IS REMARKABLY WELL

VOUR COMNAND?GET BOOK

ot 17

HERWIT 1S HERE

Y0U FLOP THREE TINES THEN DIE

CHIT ANY KEY TO RETURN TO THE MAIN HALL)

OEBPS/assets/2011-12-akalabeth6.png
uERPONS
a-ourt
DanAGE ITEW

star's
PRICE

OEBPS/assets/2011-09-800px-Apple_II-300x199.jpg

OEBPS/assets/2011-09-AppleWin_ScreenShot_000000005.png
NG ELAYED. AND CAN SMELL INCENSE FROM
BasT

HERWIT 1S HERE

VOUR COMNAND?E

SEERAL RARE SPICES HERE

OUR COMMANDT

OEBPS/assets/2011-11-Prisoner-The-_000000015.png
UHAT 1S THIS FASCINATION WITH HACHINES?

OEBPS/assets/2011-08-0038.png
THE FATAL ADNISSION

f DARING VENTIRE
INT THE HEPRT
o THe
THIRD REICH

(PRESS ~ENTER- TO CONTINUE.>_

